
Efficiency of A Domain-Based Fog Computing Architecture

Edmund Chen, Kyle Dunne, Aditya Tyagi
†UC Berkeley EE 122 Communication Systems

Efficiency of A Domain-Based Fog Computing Architecture

Edmund Chen, Kyle Dunne, Aditya Tyagi
†UC Berkeley EE 122 Communication Systems

Abstract

In this project, we investigate di↵erent methods to improve quality of service (QoS)
for fog network applications. This emerging technology seeks to further minimize
service delay by adding a layer of ”fog” devices between the IOT and Cloud layers.
We explore di↵erent protocols that may be introduced in the fog layer to further
reduce IOT service delay, including FIFO, CR, and EDD.

Background

A fog layer is introduced to receive tasks which would otherwise be transmitted to
the cloud for the purposes of expediting service delay for IOT applications. This
new architecture comprises of a certain number of ”fog nodes” being placed at close
proximity to the IOT layer, thus the term ”edge computing”. Currently, a common
protocol for the introduction of this layer is as follows. Naturally, we must di↵eren-
tiate certain requests by their respective computational times, which are sorted into
”light” and ”heavy” requests, whose average processing times are given by zj and z

0
j

respectively. Then the average waiting time at fog node j is

Wj = cjzj + c
0
j
z
0
j

where cj and c
0
j
are the number of light and heavy tasks in queue at the fog node

respectively. We want to model a way to minimize the waiting time of any given task,
which can be given by

di = p
I
i
(Ai) + p

F
i
(XIF

ij
+ Y

IF
ij

+ Lij) + p
C
i
(XIC

ik
+ Y

IC

ik
+Hk +X

CI

ki
+ Y

CI

ki
)

where XLL
0

st
denotes propagation delay, Y LL

0
st

denotes transmission delay, for node s
in layer L to node t in layer L0. pL

i
denotes the probability the request is evaluated

at layer L. i, j, k and I,F,C correspond to nodes and layers for IOT, fog, and cloud
respectively. We can see that the transmission delays can be modeled by

Y
IF
ij

=
X

l

⇣i

Rl

for the data amount of the request at question ⇣i and for the link rate Rl between the
two nodes in question. Ai, Lij,Hk denote the processing time at the IOT, Fog, and
Cloud layers respectively. The processing in the cloud and IOT levels are

Hk = fkgk + f
0
k
g
0
k

Ai = bi · ai + b
0
i
· a0

i

simply the average waiting time, similar to Wj. Furthermore, we can see that the
delay in the fog layer can be given by

Lij(x) = Pj(W̄j+X
FI
ji

+Y
FI
ji

)+ (1�Pj)
h
(1��(x))(XFF

jj0 +Y
FF

jj0 +Lij0(x+1))+

�(x)(XFC

jk
+ Y

FC

jk
+ H̄k +X

CI

ki
+ Y

CI

ki
)
i

If we take Pj to be the probability that node j in the fog layer accepts such an IOT
task, the first term expresses the total time from entering the queue to returning to
the original IOT node. In the case that node j cannot take this task, as its Wj is
above a certain threshold ✓j, the task is either forwarded to another fog node j0 and
then the function is recursively run, or it goes to the cloud layer if it has reached a
maximum number of forwards. �(x) serves to determine this factor, which remains
at 0 until the task request at hand has reached the maximum number of forwards.

Problem Formulation

What is the best way to organize the fog layer? The established protocol leaves many options
open for further optimization. The goal of our project is to investigate alternative architectures
for the fog layer and to run simulations testing these alternative architectures against the es-
tablished one. Our project’s main stipulation is the introduction of a control node at the fog
layer, as the incessant propagation between the fog nodes would seem to be a major factor to
the increasing delay of each IOT task. To introduce a control node, we pinpoint node nc as a
specific control node in each fog domain. Doing this sacrifices one node to do actual processing,
which we denote as ”execution nodes”. Thus, the revised di and Lij is given by

Lij = (1� �(x))
h
X

FF
cj

+ Y
FF
cj

+Wj +X
FI
ji

+ Y
FI
ji

i
+�(x)

h
X

FC

ck
+ Y

FC

ck
+Hk +X

CI

ki
+ Y

CI

ki

i

di = p
I
i
(Ai) + p

F
i
(XIF

ic
+ Y

IF
ic

+ Lij) + p
C
i
(XIC

ik
+ Y

IC

ik
+Hk +X

CI

ki
+ Y

CI

ki
)

Fig. 1: Queuing Model for the fog domain

Thus we get the model shown for the fog network queuing model. In addition, we will create a
normal distribution of processing times as to subvert the simplification of having only ”heavy”
and ”light” requests.

The second optimization we are testing is on the use of di↵erent queuing algorithms at
the fog nodes. The current model uses FIFO (first in first out). In an attempt to make a more
e�cient architecture, we introduced a ”deadline” to each task. This allows the IoT devices to
prioritize more important tasks by giving them earlier deadlines. To accommodate this, we
tested our architecture with two additional queuing mechanisms: EDD (earliest-due-deadline),
where tasks are executed in order their deadline (from earliest to latest), and CR (critical
ratio), where both the deadline and the computational complexity of tasks are considered when
deciding which task to evaluate next. We test all these situations using discrete event simulation
in python with various parameters.

Our model was accomplished through using a discrete event simulation simulation in python,
where we could map out each of the respective events that happen with an IOT request. These
events included things like ”fog request arrived at control node”, and others to that e↵ect. Our
simulated network comprised of 1 cloud server, 1 fog domain, 10 fog nodes, and evaluated a total
of 1500 IOT requests from the IOT layer. In the case of a control node, the 10 fog nodes would
be split into 9 execution nodes, and 1 control node. These parameters coupled with the delays
we chose were used to obtain our metrics which included ”total time to complete tasks”, ”number
of tasks o✏oaded to cloud”, and ”number of tardy tasks”. It would stand to reason tha the fog
layer is farther away from the cloud layer than the IOT layer, so our parameters reflected that
similarly. However, parameters such as delay and processing time could be easily changed.

Results

Running the simulation described in the Problem Formulation yields the following
results for the 4 types of queuing algorithms

Fog Queue Makespan[ms] # of Tardy Tasks # Tasks to Cloud
FCFS 413698.169ms 1064/1500 814/1500
EDF 412481.24ms 1081/1500 813/1500
CR 419568.97ms 1042/1500 808/1500
Fog O✏oading 444406.74ms 1165/1500 703/1500

As shown, the introduction of the index node is better than the original case, fog
o✏oading. Within the queuing policies, it we see that EDF ultimately works best in
the sake of time, but works out to have a higher # of tardy tasks. All the queuing
policies with an index node hover at around the same o✏oading rate to the cloud,
showing consistently better results than the fog o✏oading. Each queuing policy
aligns nicely with the metric they seek to optimize.

Conclusions

As with the results in our discrete event simulation above, we can see that the
introduction of an index node does reduce IOT service delay by a significant amount
as compared to the algorithms introduced in [2][1], and the further queuing policies
within such an architecture optimize the various minutia of the fog layer as a whole. It
might be interesting for future work to simulate multiple domains, consider di↵erent
task request sizes, or find an algorithm to change ✓ dynamically.

References

[1] A. Yousefpour G. Ishigaki R. Gour and JP. Jue. “On Reducing IOT Service Delay via Fog
O✏oading”. In: IEEE 15 (Apr. 2018), pp. 303–370.

[2] T. Mori Y. Utsunomiya X. Tian and T. Okuda.“Queuing Theoretic Approach to Job Assignment
Strategy Considering Various Inter-arrival of Job in Fog Computing”. In: IEEE (Sept. 2017),
pp. 151–156.


