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3 Problem Set 3
Problem 1.
(a) So we seek to write a function that can generate meshes and output

p, t, e = pmesh(pv,hmax,nref)

We are given the functions delaunay(p), all_edges(t), boundary_nodes(t), tplot(p, t), and
inpolygon(p, pv). Following the instructions, we must first create a function that divides the boundaries
into nodes with a distance ≤ hmax. Julia has a convenient function for this

ceil(a/b)

which outputs a value ≤ b which satisfies a%b = 0. Thus, we can do this using the distance formula and
appropriate iterate around the boundary lines.

function div_poly(polys_xy0,hmax)
x0=polys_xy0[1,1]
y0=polys_xy0[1,2]
ret = [x0 y0]
for i = 2:size(polys_xy0)[1]

#println(polys[i,:])
x=polys_xy0[i,1]
y=polys_xy0[i,2]
len=sqrt((x-x0)^2+(y-y0)^2)
n=ceil(len/hmax)
for j=1:n-1

nx=(x0*(n-j)+x*j)/n
ny=(y0*(n-j)+y*j)/n
#println(nx,",",ny)
ret = [ret; nx ny]

end
ret = [ret; x y]
x0=x
y0=y

end
return ret

end

This takes in the matrix pv of the polygon vertices, and the distance hmax we seek to make the node
spacing. Next, we define a couple functions for the following parts, namely centroid for determining which
triangles are outside the polygon, area for determining which triangle to add another node, circumcenter
for determining where to add said node, and get_new_tri to omit the triangles that are outside of the
domain. Firstly, we can find the centroid by using

Ox =
1

3
(Ax +Bx + Cx)

with A,B,C being the 3 vertices of the triangle and doing the same for the y coordinate respectively. Quite
straightforwardly, this yields

function centroids(points, tri)
ret = reshape([],0,2)
for i = 1:size(tri)[1]

nx = (points[tri[i,1],1]+points[tri[i,2],1]+points[tri[i,3],1])/3
ny = (points[tri[i,1],2]+points[tri[i,2],2]+points[tri[i,3],2])/3
ret = [ret; nx ny]
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end
return ret

end

Next, we define the area function to find which triangle needs to have an additional node added. Note that
we really only need the index of the triangle with the largest area, the actual areas do not matter in our
situation. This can be calculated using the shoelace formula

a =
1

2
(Ax(By − Cy) +Bx(Cy −Ay) + Cx(Ay −By))

and constantly keeping a parameter on whichever triangle has the greatest area. Likewise, this is written by

function area(points,tri)
ret = []
max = 0.0
maxindex = -1
for i = 1:size(tri)[1]

na = (points[tri[i,1],1]*(points[tri[i,2],2]-points[tri[i,3],2])
+ points[tri[i,2],1]*(points[tri[i,3],2]-points[tri[i,1],2])
+ points[tri[i,3],1]*(points[tri[i,1],2]-points[tri[i,2],2]))/2

ret = [ret; na]
if na>max

max=na
maxindex=i

end
end
return ret, maxindex, max

end

Lastly, to find the circumcenter, we simply need one value, unlike the functions area and centroid where we
indexed through all the triangles, we can determine the centroids through manipulation of their midpoints
and then finding the intersection of the 2 bisectors. This is shown by

function circumcenter(p, t, it)
ct = t[it,:]
dp1 = p[ct[2], :] - p[ct[1], :]
dp2 = p[ct[3], :] - p[ct[1], :]

mid1 = (p[ct[2], :] + p[ct[1], :])/2
mid2 = (p[ct[3], :] + p[ct[1], :])/2

rhs = mid2-mid1
s = [-dp1[2] dp2[2] ; dp1[1] -dp2[1]]\rhs
cpc = mid1 + s[1] * [-dp1[2], dp1[1]]

return cpc
end

where it represents the index of the triangle that we are targeting in any certain scenario. Finally, to omit
the triangles that are determined to be outside of the polygon, we can simply copy the matrix over using
the function

function get_new_tri(inside,t)
t_new=zeros(Int64,0,3)
for i = 1:size(t)[1]

if inside[i]
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t_new = [t_new;t[i,:]’]
end

end
return t_new

end

where inside is the vector outputted by the inpolygon function as given by the meshutilities. To put this all
together, we run the first iteration of delaunay outside the loop, as it has to take into account the division
of the boundary segments.

pvd = div_poly(pv,hmax)
t = delaunay(pvd)

centers = centroids(pvd,t)
inside = inpolygon(centers,pv)
t = get_new_tri(inside,t)
areas, maxindex, max = area(pvd,t)

Here, we have the established boundary nodes in pvd, and then identify and omit the triangles which are
outside the boundary using the inpolygon function given to us. After this is initialized, we can simply run
this in a loop until all areas are under h2

max/2. This is expressed by

while (max > 0.5*hmax.^2)
added = circumcenter(pvd,t,maxindex)
pvd = [pvd; added’]
t = delaunay(pvd)
centers = centroids(pvd,t)

inside = inpolygon(centers,pv)
t = get_new_tri(inside,t)
areas, maxindex, max = area(pvd,t)

end

which simply keeps on re triangulating with the circumcenter node added of the largest triangle. From this,
we can plot the figure given in step g, as shown below.

Lastly, we need to do the refinement. This can be accomplished by simply finding the average of the x y
nodes on each of the edges called in the all_edges function. Note that we still have to run through which
triangles are inside the polygon to omit those outside the boundary.
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for i = 1:nref
edges = all_edges(t)[1]
for n = 1:size(edges)[1]

node = (pvd[edges[n,1],:] + pvd[edges[n,2],:])/2.0
pvd = [pvd;node’]

end
t = delaunay(pvd)
centers = centroids(pvd,t)
inside = inpolygon(centers,pv)
t = get_new_tri(inside,t)

end

hence these 3 bits of code can be combined to make the function pmesh. A quick test of the given example
in the problem set confirms this works, we get the following result

Quick test of some other polygons confirms this works reliably, and can plot functions.

(a) Plotting Function (b) Different Polygon

Problem 2.
For this problem, we seek to propagate the solution of the Eikonal equations inwards. Using the discretization
that is provided in the slides, as we only have 2 dimensions i and j rather than the 3 used in the slides, we
can use the upwind method of the form

φn+1
ijk = φn

ijk −∆t
(

max(F, 0)∇+
ijk + min(F, 0)∇−

ijk

)
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Where

∇+
ijk = [max(D−xφn

ijk, 0)
2 + min(D+xφn

ijk, 0)
2 + max(D−yφn

ijk, 0)
2 + min(D+yφn

ijk, 0)
2]

∇−
ijk = [min(D−xφn

ijk, 0)
2 + max(D+xφn

ijk, 0)
2 + min(D−yφn

ijk, 0)
2 + max(D+yφn

ijk, 0)
2]

First defining the the four forward and backward step approximations we can quite straightforwardly get
the functions

function D_mx(phi,i,j,h)
if i>1

return (phi[i-1,j]-phi[i,j])/(-h)
else

return 0.0
end

end
function D_px(phi,i,j,h)

return (phi[i+1,j]-phi[i,j])/(h)
end
function D_my(phi,i,j,h)

if j>1
return (phi[i,j-1]-phi[i,j])/(-h)

else
return 0.0

end
end
function D_py(phi,i,j,h)

return (phi[i,j+1]-phi[i,j])/(h)
end

to evaluate the discretization for the upwinded step for φ we can see that only ∇+ or ∇− is evaluated since
of the max, min function. This can be evaluated through the code

if fv>0.0
lap_p=sqrt(max(D_mx(phi,i,j,h),0)^2+min(D_px(phi,i,j,h),0)
^2+max(D_my(phi,i,j,h),0)^2+min(D_py(phi,i,j,h),0)^2)
phi_n1[i,j]=phi[i,j]-dt*(fv*lap_p-1.0)

else
lap_m=sqrt(min(D_mx(phi,i,j,h),0)^2+max(D_px(phi,i,j,h),0)
^2+min(D_my(phi,i,j,h),0)^2+max(D_py(phi,i,j,h),0)^2)
phi_n1[i,j]=phi[i,j]-dt*(fv*lap_m-1.0)

end

thus, we can use

N=size(phi)[1]
nz=spzeros(Int,N,N)
phi_n1=spzeros(N,N)
(I,J,V)=findnz(phi)
#println(nz)
for (i,j,v) in zip(I,J,V)

#global nz
nz[i,j]=1
if i>1

nz[i-1,j]=1
if j>1
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nz[i-1,j-1]=1
end
if j<N

nz[i-1,j+1]=1
end

end
if i<N

nz[i+1,j]=1
if j>1

nz[i+1,j-1]=1
end
if j<N

nz[i+1,j+1]=1
end

end
if j>1

nz[i,j-1]=1
end
if j<N

nz[i,j+1]=1
end

end
(I,J,V)=findnz(nz)

to calculate the iterative step using the level set method. To actually iterate this along time, we can define
a timestep and appropriately write
h = 1/100
N = ceil(Int,1.0/h)
phi=spzeros(N,N)
phi[floor(Int,0.2/h),floor(Int,0.2/h)]=1.0
phi[floor(Int,0.2/h),floor(Int,0.2/h)]=0.0
function F(x,y)

if y < 50
return 0.5

else
return 1

end
end
dt=0.0001
for k=1:500

global phi, F, dt, h
phi=cal_phi_n1(phi,F,dt,h)
println("t=",k*dt)
#println(phi)
println("-------------")

end
From the equation provided, we can solve

"r = n× dt

"r =
∇φ

|∇φ|
and using numerical methods,

φi+1,j−φi−1,j

2h , φi+1,j+1−0
2h√

(φi+1,j−φi−1,j

2h )2 + (φi+1,j+1−0
2h )2

× dt
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For instance, if we just use the center point .5 .5 in the unit square, we can see that the solution propagates,
giving a contour graph of the form

Following this, we can use the test case provided to get the following for a departure of 0.2 0.2 and an arrival
of 0.8 0.8

Some of the other cases notes that the values of F are changing, which can be accounted for simply by
introducing a function for F, for instance

function F(x,y)
return 1 - 0.9 * (cos(4pi*x)*(2.71828)^(-10*((x-.5)^2+ (y-.5)^2)))

end

or whatever is appropriate for F. For the piece wise function of F, we can see that this results in a staggered
contour around 0.5, as the speed values are different around this boundary.

20



Math 228B Numerical Methods Edmund Chen

4 Problem Set 4
Problem 1.
(a) To get the Galerkin formulation, we first multiply each side of the original equation by a dummy function
v(x) and then take find the integral along the bounds.

u′′′′(x) = f(x) = 480x− 120

∫

Ω
u′′′′(x)v(x)dx =

∫

Ω
f(x)v(x)dx

Integrating by parts 2 times and plugging in the domain that is specified in the problem yields

v(1)u′′′(1)− v(0)u′′′(0)− v′(1)u′′(1) + v′(0)u′′(0)−
∫ 1

0
u′′(x)v′′(x)dx =

∫ 1

0
f(x)v(x)dx

Since v(0) = v′(0) = v′(1) = v(1) = 0, all the leftmost terms outside the integral evaluate to 0, and we get
the Galerkin formula desired in the problem,

∫ 1

0
u′′(x)v′′(x)dx =

∫ 1

0
f(x)v(x)dx

(b) The basis function can be found by a manipulation of the conditions that it needs to fulfill, specifically
given the nodes that it has the different elements on K on, we have

φi(x) =
(x− xi+1)2(a(x− xi) + 1)

(x− xi+1)2

Expanding for the function a, we have

φ1(x) =
(x− xi−1)2

(
2(x−xi)
xi−1−xi

+ 1
)

(xi − xi−1)2
= −16x3 + 12x2

as we are solving for the range between 0 and 0.5 for x in this specific basis function component.

φ2(x) =
(x− xi+1)2

(
2(x−xi)
xi+1−xi

+ 1
)

(xi − xi+1)2
= 16x3 − 36x2 + 24x− 4

as we are solving for the range between 0.5 and 1 for x in this specific basis function component. φ1 and φ2

denote the 2 basis function components.
(c) Evaluating the functions

aij =

∫ 1

0
φ′′
i φ

′′
j dx

we get [
−8 19.2
19.2 −8

] [
u1

u2

]
=

[
1/2
1/2

]

which can then be solved for the numerical solutions.
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Problem 2.
We want to find a function that can solve the equation

−∇2u(x, y) = 1

on the domain that is provided in each of the three test cases, which will be triangulated through the pmesh
function established in the previous homework. As shown by the finite element notes, are Galerkin form is
given by ∫

Ω
∇uh ·∇vdx =

∫

Ω
fvdx+

∮

Γ
gvds

However, as all our Neumann conditions are of the form

n ·∇u = 0

we won’t have the last term shown here. Considering a single triangular element T k, with vertices xk
1 , x

k
2 , x

k
3

we have the linear basis functions of the form

ϕk
α = ckα + ckx,αx+ cky,αy

This can be solved as a linear system given by



1 xk

1 yk1
1 xk

2 yk2
1 xk

3 yk3








ckα
ckx,α
cky,α



 =




1
0
0





and replacing the RHS with respective columns of the 3x3 identity matrix to get a total of 9 coefficients. We
can solve this through introducing simple evaluations for both the RHS and LHS of this equation, writing it
into a function of the form

function coefficients(RHS, p, t, k)
LHS = [1 p[t[k,1],1] p[t[k,1],2]; 1 p[t[k,2],1] p[t[k,2],2]; 1 p[t[k,3],1] p[t[k,3],2]]
coeff = LHS\RHS’
return coeff’

end

which returns the 9 coefficients in a 3x3 matrix for ease of indexing. The elementary matrix as referenced
in the notes then becomes

Ak
αβ =

∫

Tk

∂ϕk
α

∂x

∂ϕk
β

∂x
+

∂ϕk
α

∂y

∂ϕk
β

∂y
dx = Areak(ckx,αckx,β + cky,αc

k
y,β)

Using the previously established shoelace formula that was inside the pmesh function, we can get the area of
the triangle in question and the coefficients can be taken by the 3x3 matrix established above. Disregarding
the area, this value is given by

function element(coeffmatrix, a, b)
return coeffmatrix[a,2]*coeffmatrix[b,2] + coeffmatrix[a,3]*coeffmatrix[b,3]

end

In order to implement this, we have to effectively run the stamping method for each of the triangles that we
have in the mesh given by the array t from the pmesh output. After establishing the necesary coefficients,
we can use

A[t[k,:],t[k,:]] = A[t[k,:],t[k,:]]+insert
#aa = areas[k]/3.0
b[t[k,:]] = b[t[k,:]].+ areas[k]/3.0
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to "stamp" the values of the local matrices into the global one. This results in a established code of

areas = triarea(p,t)
n = size(p)[1]
A = spzeros(n, n); b = zeros(n);
for k = 1:size(t)[1]

cm = [coefficients([1 0 0] , p, t, k) ;
coefficients([0 1 0] , p, t, k) ;
coefficients([0 0 1] , p, t, k) ]

insert = [element(cm, 1, 1) element(cm, 1, 2) element(cm, 1, 3);
element(cm, 2, 1) element(cm, 2, 2) element(cm, 2, 3);
element(cm, 3, 1) element(cm, 3, 2) element(cm, 3, 3)]

insert *= areas[k]

A[t[k,:],t[k,:]] = A[t[k,:],t[k,:]]+insert
#aa = areas[k]/3.0
b[t[k,:]] = b[t[k,:]].+ areas[k]/3.0

end

After this, we establish the Dirichelt boundary conditions which are given along the nodes which are specified
by the vector e that was outputted from the pmesh function. We go along each node that is expressed in
this vector, and set uh,i = 0 which can be accomplished by the code

for k = 1:size(e)[1]
i=e[k]
A[i,:].=0.0
A[i,i]=1.0
b[i]=0.0

end
dropzeros!(A)

Combining this all we get the following code for the fempoi function as a whole

using SparseArrays
using LinearAlgebra
function coefficients(RHS, p, t, k)

LHS = [1 p[t[k,1],1] p[t[k,1],2]; 1 p[t[k,2],1] p[t[k,2],2]; 1 p[t[k,3],1] p[t[k,3],2]]
coeff = LHS\RHS’
return coeff’

end

function element(coeffmatrix, a, b)
return coeffmatrix[a,2]*coeffmatrix[b,2] + coeffmatrix[a,3]*coeffmatrix[b,3]

end

function fempoi(p, t, e)
areas = triarea(p,t)
n = size(p)[1]
A = spzeros(n, n); b = zeros(n);
for k = 1:size(t)[1]

cm = [coefficients([1 0 0] , p, t, k) ;
coefficients([0 1 0] , p, t, k) ;
coefficients([0 0 1] , p, t, k) ]

insert = [element(cm, 1, 1) element(cm, 1, 2) element(cm, 1, 3);
element(cm, 2, 1) element(cm, 2, 2) element(cm, 2, 3);
element(cm, 3, 1) element(cm, 3, 2) element(cm, 3, 3)]
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insert *= areas[k]

A[t[k,:],t[k,:]] = A[t[k,:],t[k,:]]+insert
#aa = areas[k]/3.0
b[t[k,:]] = b[t[k,:]].+ areas[k]/3.0

end
for k = 1:size(e)[1]

i=e[k]
A[i,:].=0.0
A[i,i]=1.0
b[i]=0.0

end
dropzeros!(A)
println(b)
println(A)

return A \ b
end

Using the 3 test cases that are provided on the problem sheet, we get roughly the same answers as shown
below.

Figure 6: square with left/bottom Dirichlet
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Figure 7: circle with Dirichlet

Figure 8: polygon with mix of both

Problem 3.
For the error function, the general formula for this we use the max norm of the difference between the u
values for the 2 nodes. We can do this simply because the respective specifications are simply adding on to
the end of the matrix. This results in simply comparing the truncated matrix of the higher nref solution
with the lower ones. The basic formula for max norm can be seen by

errorarray = maximum(abs.(umax[1:size(uprox)[1]] - uprox))

Repeating this for each of the iterations from 0 to nref, we get to output an array with the error vector.

function poiconv(pv, hmax, nrefmax)
pmax, tmax, emax = pmesh(pv, hmax, nrefmax)
umax = fempoi(pmax, tmax, emax)
errors = zeros(nrefmax)
for ncur = 0:(nrefmax-1)

pprox, tprox, eprox = pmesh(pv, hmax, ncur)
uprox = fempoi(pprox, tprox, eprox)
errorarray = maximum(abs.(umax[1:size(uprox)[1]] - uprox))
#errors = [errors ; errorarray]
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errors[ncur+1]=errorarray
end
return errors

end

Using the function provided by the problem set

hmax = 0.15
pv_square = Float64[0 0; 1 0; 1 1; 0 1; 0 0]
pv_polygon = Float64[0 0; 1 0; .5 .5; 1 1; 0 1; 0 0]

errors_square = poiconv(pv_square, hmax, 3)
errors_polygon = poiconv(pv_polygon, hmax, 3)
errors = [errors_square errors_polygon]

error2 = errors[1, :]

clf()
loglog(hmax ./ [1,2,4], errors)
rates = @. log2(errors[end-1,:]) - log2(errors[end,:])

we can see the convergence plots are given by

Figure 9: convergence plots

And get the rates of 1.930788150433111, 1.1096771919045025 as the output as specified by the problem
statement.
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5 Problem Set 5
Problem 1.
(a) We want to find a Galerkin formulation for the given system, with the 3 boundary Neumann conditions.
To do this, we integrate on the respective boundaries and multiplying by a test function v, we get

∫

Ω
−∇2uhvdx =

∫

Ω
k2uhvdx

∫

Ω
−∇2uhvdx =

∫

Ω
k2uhvdx+

∮

Γout

(−ikuh)vds+

∮

Γin

(2ik − ikuh)vds

Thus, the Galerkin formulation is given by: Find a function uh ∈ Vh that satisfies
∫

Ω
∇uh ·∇vdx =

∫

Ω
k2uhvdx+

∮

Γout

(−ikuh)vds+

∮

Γin

(2ik − ikuh)vds

(b) We replace uh =
∑N

j=1 ujϕj and v = ϕi(x) yields

∫

Ω
[
N∑

j=1

uj∇ϕj ] ·∇ϕi(x)dx =

∫

Ω
k2[

N∑

j=1

ujϕj ]ϕidx−
∮

Γout

ik[
N∑

j=1

ujϕj ]ϕids+

∮

Γin

(2ik − ik[
N∑

j=1

ujϕj ])ϕids

Factoring out the u vector with a rearrangement of terms and switching the summation and integral gives

N∑

j=1

uj

(∫

Ω
∇ϕi ·∇ϕjdx− k2

∫

Ω
ϕiϕjdx+ ik

(∮

Γout

ϕiϕjds+

∮

Γin

ϕiϕjds

))
= 2ik

∮

Γin

ϕids

thus, this gives the discretization of the form Au = b where A = K−k2M + ik(Bout+Bin) and b = 2ikbin

K =

∫

Ω
∇ϕi ·∇ϕjdx M =

∫

Ω
ϕiϕjdx Bout =

∮

Γout

ϕiϕjds Bin =

∮

Γin

ϕiϕjds bin =

∮

Γin

ϕids

which can be seen in the discretization above.
(c) The transmit identity can be shown by uHBoutu and expanding

H(u) =

∫

Γout

|u|2ds

H(u) = uHBoutu = uiuj

∮

Γout

ϕiϕjds =

∮

Γout

(uiϕi)(ujϕj)ds =

∮

Γout

|u|2ds

as the hermitian transpose can be rearranged into u.

Problem 2.
(a) Quite straightforwardly, we can see that the solution u(x, y) = e−ikx works since

−∇2(e−ikx)− k2(e−ikx) = 0

All the boundary conditions hold aswell as u′ = −ike−ikx, using the appropriate normal vectors gives

[0,±1][−ike−ikx, 0] = 0

[1, 0][−ike−ikx, 0] = −iku

[−1, 0][−ike−ikx, 0] = 2ik − iku

for the boundary conditions on Γwall,Γout,Γin the first 2 evidently hold for all x, while the last one holds
for specifically the x = 0 boundary on Γin, as ike−ik(0) + ike−ik(0) = 2ik
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(b) Given the appropriate boundary conditions stated by the problem, we can use the all_edges function
to find the appropriate boundary edges whose nodes are on the given boundaries. This is accomplished by
looping through all the edges and testing whether it is a vertical edge on x = 0 for in, x = 5 for out, and all
others are classified as wall
function waveguide_edges(p,t)

elist, bedgeindex = all_edges(t)
bnode = boundary_nodes(t)
ein = []
eout = []
ewall = []
for i = 1:size(bedgeindex)[1]

if p[elist[bedgeindex[i],1],1] == 0 && p[elist[bedgeindex[i],2],1] == 0
ein = [ein; bedgeindex[i]]

elseif p[elist[bedgeindex[i],1],1] == 5 && p[elist[bedgeindex[i],2],1] == 5
eout = [eout; bedgeindex[i]]

else
ewall = [ewall; bedgeindex[i]]

end
end
ein = elist[ein,:]
eout = elist[eout,:]
ewall = elist[ewall,:]
return ceil.(Int,ein), ceil.(Int,eout), ceil.(Int,ewall)

end

(c) For K, we have the same formula from the PS4 FEM problem, as the dot product ∇ϕi · ∇ϕj can be
shown to be expressed as

Kn
ij =

∫

Tn

cnx,ic
n
x,j + cny,ic

n
y,jdx = Arean(cnx,icnx,j + cny,ic

n
y,j)

for the basis functions ϕi and ϕj , and the triangle element Tn. Next, we can find the mass matrix M to be
expressed by a product of 2 given basis functions i, j.

ϕn
2 (x) ϕn

3 (x)

xn
2 xn

3

xn
1

Following the quadrature expression that is given for quadratic elements, we can effectively evaluate the
mass matrix M with similar methods that are used in problem four. Thus, we have the form

Mn
ij =

∫

Tn

ϕiϕjdx =
Areak

3
(f(

4x1 + x2 + x3

6
) + f(

x1 + 4x2 + x3

6
) + f(

x1 + x2 + 4x3

6
))

where f = ϕiϕj . Each of the following line integrals are computed in similar ways. As we know that at the
boundaries Γin and Γout that x is strictly constant, and y goes from 0 to 1, we can directly compute the
following line integrals as ϕiϕj can be computed numerically. Thus we get a 2 by 2 matrix for each set of
boundary point form an edge, which are then subsequently stamped onto their respective nodes.

Bout =

∮

Γout

ϕiϕjds

=

∫ yj

yi

(cki + ckx,ix+ cky,iy)(c
k
j + ckx,jx+ cky,jy)dy

= (cki c
k
j )y + (cki c

k
x,j + ckj c

k
x,i)xy +

1

2
y2(cky,ic

k
j + cky,jc

k
i )

+
1

2
y2x(ckx,ic

k
y,j + ckx,jc

k
y,i) + ckx,jc

k
x,ix

2y +
1

3
y3cky,jc

k
y,i

∣∣∣∣
yj

yi
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In this specific case, the x values would all be a constant above 0, as this is the Γout boundary, whereas the
other in boundary would see the x values become 0. The element load vector is calculated in a similar way,
just with only one basis function. Our coefficient matrix is given by
function coeffmx(RHS, p, t, k)

nm = p[t[k,1:3],:]
LHS = zeros(3,3)
for n = 1:3

LHS[n,:] = [1 nm[n,1] nm[n,2]]
end
return (LHS\RHS)

end

and the individual entries for the matrices K and M are given by the functions
function kentry(cmx, i, j, ak)

return ak*(cmx[2,i]*cmx[2,j] + cmx[3,i]*cmx[3,j])
end
function mentry(cmx, i, j, ak, p, t, k)

f(x,y) = (cmx[1,i] + cmx[2,i]*x + cmx[3,i]*y)*(cmx[1,j] + cmx[2,j]*x + cmx[3,j]*y)
result = 0.0
for n = 1:3

base = (p[t[k,1],:] + p[t[k,2],:] + p[t[k,3],:])/6 + p[t[k,n],:]/2
result = result + f(base[1],base[2])

end
result = (result*ak)/3
return result

end

On the other hand, the line integrals are a bit more complicated to compute, as we need to index the
two nodes i, j and the triangular element which they are both part of, k. This is done by introducing an
additional function specifically for such indexing
function find_bnd(e,t)

ind=intersect(hcat(getindex.(findall(x -> x==e[1], t),1)),hcat(getindex.(findall(x -> x==e[2],t),1)))
i=0
j=0
for k=1:3

if t[ind[1],k]==e[1]
i=k

elseif t[ind[1],k]==e[2]
j=k

end
end
return ind[1],i,j

end

function boundsint(p, t, e)
k, i, j = find_bnd(e, t)
cmx = coeffmx(Matrix{Float64}(I, 3, 3), p, t, k)
cross = 0
f(x,y) = cmx[1,i]*cmx[1,j]*y + x*y*(cmx[1,j]*cmx[2,i] + cmx[1,i]*cmx[2,j]) +
(y^2*(cmx[3,i]*cmx[1,j] + cmx[3,j]*cmx[1,i]))/2 + (y^2*x*(cmx[2,i]*cmx[3,j] +
cmx[2,j]*cmx[3,i]))/2 + cmx[2,i]*cmx[2,j]*x^2*y + (cmx[3,i]*cmx[3,j]*y^3)/3
h(x,y) = cmx[1,i]*cmx[1,i]*y + x*y*(cmx[1,i]*cmx[2,i] + cmx[1,i]*cmx[2,i]) +
(y^2*(cmx[3,i]*cmx[1,i] + cmx[3,i]*cmx[1,i]))/2 + (y^2*x*(cmx[2,i]*cmx[3,i] +
cmx[2,i]*cmx[3,i]))/2 + cmx[2,i]*cmx[2,i]*x^2*y + (cmx[3,i]*cmx[3,i]*y^3)/3
g(x,y) = cmx[1,j]*cmx[1,j]*y + x*y*(cmx[1,j]*cmx[2,j] + cmx[1,j]*cmx[2,j]) +
(y^2*(cmx[3,j]*cmx[1,j] + cmx[3,j]*cmx[1,j]))/2 + (y^2*x*(cmx[2,j]*cmx[3,j] +
cmx[2,j]*cmx[3,j]))/2 + cmx[2,j]*cmx[2,j]*x^2*y + (cmx[3,j]*cmx[3,j]*y^3)/3
if p[t[k,i],2] > p[t[k,j],2]

cross = f(p[t[k,i],1],p[t[k,i],2]) - f(p[t[k,i],1],p[t[k,j],2])
id = h(p[t[k,i],1],p[t[k,i],2]) - h(p[t[k,i],1],p[t[k,j],2])
jd = g(p[t[k,i],1],p[t[k,i],2]) - g(p[t[k,i],1],p[t[k,j],2])

elseif p[t[k,i],2] < p[t[k,j],2]
cross = f(p[t[k,i],1],p[t[k,j],2]) - f(p[t[k,i],1],p[t[k,i],2])
id = h(p[t[k,i],1],p[t[k,j],2]) - h(p[t[k,i],1],p[t[k,i],2])
jd = g(p[t[k,i],1],p[t[k,j],2]) - g(p[t[k,i],1],p[t[k,i],2])
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end
return [id cross; cross jd]

end

which can be then combined by iterating through each element, creating our desired function, stamping each
element independently
function femhelmholtz(p, t, ein, eout)

areas = triarea(p,t)
n = size(p)[1]
K = spzeros(n,n); M = spzeros(n,n); Bin = spzeros(n,n); Bout = spzeros(n,n); bin = zeros(n);
for kn = 1:size(t)[1]

kinsert = zeros(3,3)
minsert = zeros(3,3)
cmx = coeffmx(Matrix{Float64}(I, 3, 3), p, t, kn)
for i = 1:3, j = 1:3

kinsert[i,j] = kentry(cmx,i,j,areas[kn])
minsert[i,j] = mentry(cmx, i, j, areas[kn], p, t, kn)

end
K[t[kn,:],t[kn,:]] = K[t[kn,:],t[kn,:]]+kinsert
M[t[kn,:],t[kn,:]] = M[t[kn,:],t[kn,:]]+minsert

end
for m = 1:size(ein)[1]

einsert = boundsint(p,t,ein[m,:])
Bin[ein[m,:],ein[m,:]] = Bin[ein[m,:],ein[m,:]] + einsert

end
for m = 1:size(eout)[1]

einsert = boundsint(p,t,eout[m,:])
Bout[eout[m,:],eout[m,:]] = Bout[eout[m,:],eout[m,:]] + einsert

end
for m = 1:size(ein)[1]

binsert = loadvec(p,t,ein[m,:])
bin[ein[m,:]] = bin[ein[m,:]] + binsert’

end
return K , M , Bin , Bout , bin

end

this yields the desired matrices.
(d) Through simply following the decomposition of A established in problem 1, we can use the function
function helmholtz(pv, hmax, nref, k)

p, t, e = pmesh(pv, hmax, nref)
ein, eout, ewall = waveguide_edges(p,t)
K, M, Bin, Bout, bin = femhelmholtz(p, t, ein, eout)
A = K-k^2*M+k*im*(Bout + Bin)
B = bin*2*k*im
u = A\B
ur = real.(u)
"tplot(p,t,ur)"
return u

end

which yields the appropriate solutions, pictured to the left is nref = 1, the right is nref = 4
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To find the errors and convergence rate we compare each iteration with running the highest refined mesh
through the uexact function, yielding
function helmerrors(pv, hmax, nrefmax, k)

pmax, tmax, emax = pmesh(pv, hmax, nrefmax)
e=Base.MathConstants.e
f(x,y) = e.^(-k*x*im)

umax = f(pmax[:,1],1)
errors = zeros(nrefmax)
for ncur = 1:(nrefmax)

"pprox, tprox, eprox = pmesh(pv, hmax, ncur)"
uprox = helmholtz(pv, hmax, ncur, k)
errorarray = maximum(abs.(umax[1:size(uprox)[1]] - uprox))
#errors = [errors ; errorarray]
errors[ncur]=errorarray

end
return errors

end

This gives us errors

[0.6488018138668635 0.17140607713178171 0.04336208511502913 0.010882557042220237]

which can be seen in the plot

and yields a convergence rate of 1.9944165497829438.

Problem 3.
(a) Quite straightforwardly, this is done with the consideration of the coordinates of the new mesh. We can
see an example solution in

(b) We introduce code to iterate past each of the following steps, in the form of
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pv = [0.0 0.0; 5 0; 5 1; 3.1 1; 3.1 0.2; 2.9 0.2; 2.9 1; 2.1 1; 2.1 0.2; 1.9 0.2; 1.9 1; 0 1; 0 0]
Hmx = []
for n = 1:50

k = 6+ 0.01*n
u, ur, Bout = helmholtz(pv, 0.2, 2, k)
H = conj(u’)*Bout*u
Hmx = [Hmx; H]

end
Hmx

running this data through a semilog plot yields

(c) The two solutions that represent the maximum and minimum of H(u) correspond to the maximum and
minimum of the magnitude of H, which is given by the k values at 13 and 36 for the least and highest,
respectively.
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Problem 4.
(a) First, we add the midpoints of each of the triangles, as specified here. It is rather straightforward to
add the midpoints of each of the edges, as there is a function used in pmesh for this, but it would be much
harder to find the appropriate indices to add to t2. Thus, I indexed a dictionary mid_point to store the
midpoints of each edge, according to the appropriate key. This makes it rather straightforward to avoid
duplicates, as all edges are unique, and can be easily appended to t2 through iteration.
elist, bedges, emap = all_edges(t)
mid_point=Dict()
for k = 1:size(elist)[1]

x=(p[elist[k,1],1]+p[elist[k,2],1])/2.0
y=(p[elist[k,1],2]+p[elist[k,2],2])/2.0
p=[p; x y]
mid_point[elist[k,2],elist[k,1]]=size(p)[1]
mid_point[elist[k,1],elist[k,2]]=size(p)[1]

end
t2=zeros(Int64,0,6)
for i = 1:size(t)[1]

t12=mid_point[t[i,1],t[i,2]]
t23=mid_point[t[i,2],t[i,3]]
t31=mid_point[t[i,3],t[i,1]]
t2=[t2; t[i,:]’ t12 t23 t31]

end

To find the boundary nodes, we get the boundary nodes from the original mesh using the boundary_nodes
function, and iterate through the respective keys in the mid_point structure to yield the additional midpoint
boundary nodes.
e2 = boundary_nodes(t)
for i=1:size(bedges)[1]

e=elist[bedges[i],:]
md=mid_point[e[1],e[2]]
e2=vcat(e2,md)

end

(b) In order to solve the Poisson equation for quadratic elements, we follow a similar outline as the linear
Poisson equation solver, but with slight changes to use quadratics. For a given triangle Tk we have a 6x6
Vandermode matrix, as each basis function is given by

ϕk
i (x) = cki + cki,xx+ cki,yy + cki,xyxy + cki,x2x2 + cki,y2y2

where every c denotes some constant. Thus, for any given triangular element, the coefficients are found by





1 xk
1 yk1 xk

1y
k
1 xk2

1 yk21
.
.
.









ck1 . . .
ck1,x
ck1,y
ck1,xy
ck1,x2

ck1,y2




=





1 0
0 .

.
. 0
0 1





and the corresponding coefficient matrix can be seen to model the 6 basis functions that satisfy δij for the
6 points for each triangle. To find this result is quite straightforward - we introduce the function
function coeff2(RHS, p2, t2, k)

nm = p2[t2[k,1:6],:]
LHS = zeros(6,6)
for n = 1:6

LHS[n,:] = [1 nm[n,1] nm[n,2] nm[n,1]*nm[n,2] nm[n,1]^2 nm[n,2]^2]
end
return (LHS\RHS), LHS

end
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Next, we need to establish a function that can evaluate the appropriate quadrature for this problem. The
problem statement gives that

∫

Tk

f(x)dx ≈ Ak

3

3∑

i=1

f




3∑

j=1

(xj/6 + δijxj/2)





=
Ak

3
(f(

4x1 + x2 + x3

6
) + f(

x1 + 4x2 + x3

6
) + f(

x1 + x2 + 4x3

6
))

To implement this, we find f to be

Ak
ij =

∫

Tk

∂ϕk
i

∂x

∂ϕk
j

∂x
+

∂ϕk
i

∂y

∂ϕk
j

∂y
dx

=

∫

Tk

(
(cki,x+ cki,xyy+2xcki,x2)(ckj,x+ ckj,xyy+2xckj,x2)+ (cki,y + cki,xyx+2ycki,y2)(ckj,y + ckj,xyx+2yckj,y2)

)
dx

≈ Ak

3
(f(

4x1 + x2 + x3

6
) + f(

x1 + 4x2 + x3

6
) + f(

x1 + x2 + 4x3

6
))

f = x2(cki,x2ckj,x2 + cki,xyc
k
j,xy) + y2(cki,y2ckj,y2 + cki,xyc

k
j,xy)

+ xy(2ckj,x2cki,xy + 2cki,x2ckj,xy + 2ckj,y2cki,xy + 2cki,y2ckj,xy) + x(2cki,x2ckj,x + 2ckj,x2cki,x + cki,yc
k
j,xy + ckj,yc

k
i,xy)

+ y(2cki,y2ckj,y + 2ckj,y2cki,y + cki,xc
k
j,xy + ckj,xc

k
i,xy) + cki,xc

k
j,x + cki,yc

k
j,y

Please forgive any typos in f , intended to be the expansion of the function above. Thus, the function is as
follows

function gquad(k, i, j, cmx, p2, t2, ak)
f(x,y) = 4x^2*(cmx[5,i]*cmx[5,j]) + 2x*y*(cmx[5,i]*cmx[4,j] +

cmx[5,j]*cmx[4,i]) + y^2*(cmx[4,i]*cmx[4,j]) + 2x*(cmx[5,i]*cmx[2,j] +
cmx[5,j]*cmx[2,i]) + y*(cmx[2,i]*cmx[4,j] + cmx[2,j]*cmx[4,i]) +
cmx[2,i]*cmx[2,j]

g(x,y) = 4y^2*(cmx[6,i]*cmx[6,j]) + 2x*y*(cmx[6,i]*cmx[4,j] +
cmx[6,j]*cmx[4,i]) + x^2*(cmx[4,i]*cmx[4,j]) + 2y*(cmx[6,i]*cmx[3,j] +
cmx[6,j]*cmx[3,i]) + x*(cmx[3,i]*cmx[4,j] + cmx[3,j]*cmx[4,i]) +
cmx[3,i]*cmx[3,j]

result = 0
for n = 1:3

base = (p2[t2[k,1],:] + p2[t2[k,2],:] + p2[t2[k,3],:])/6
num = base + p2[t2[k,n],:]/2
result = result + f(num[1],num[2]) + g(num[1],num[2])

end
result = (result*ak)/3
return result

end

Similarly, we need to do the same for
b =

∫

Tk

ϕidx

where we define a function gquad2 which performs a similar function, shown by
function gquad2(k, i, cmx, p2, t2, ak)

h(x,y) = cmx[1,i] + x*cmx[2,i] + y*cmx[3,i] + x*y*cmx[4,i] + x^2*cmx[5,i] + y^2*cmx[6,i]
result = 0
for n = 1:3

base = (p2[t2[k,1],:] + p2[t2[k,2],:] + p2[t2[k,3],:])/6
num = base + p2[t2[k,n],:]/2
result = result + h(num[1],num[2])

end
result = (result*ak)/3
return result

end
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To assemble the fempoi2, we iterate past all the 36 different basis function i, j combinations, for each
triangle element Tk, and then stamp the resulting matrix into the master matrix A, and similarly for b. The
Dirichlet conditions are imposed in the same way as before, setting the appropriate elements in both stiffness
matrices.
function fempoi2(p2, t2, e2)

areas = triarea(p2,t2)
n = size(p2)[1]
A = spzeros(n,n); b = zeros(n);
for k = 1:size(t2)[1]

insert = zeros(6,6)
insert2 = zeros(6)
cmx, lhss = coeff2(Matrix{Float64}(I, 6, 6), p2, t2, k)
for i = 1:6

for j = 1:6
insert[i,j] = gquad(k,i,j,cmx,p2,t2,areas[k])

end
insert2[i] = gquad2(k,i,cmx,p2,t2,areas[k])

end
A[t2[k,:],t2[k,:]] = A[t2[k,:],t2[k,:]]+insert
b[t2[k,:]] = b[t2[k,:]]+ insert2

end
for k = 1:size(e2)[1]

i=e2[k]
A[i,:].=0.0
A[i,i]=1.0
b[i]=0.0

end
return A\b

end

Running this for the most refined case, n = 4 we get the following solution

and a less refined mesh can be seen by
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(d) Modifying the poiconcv code from the last problem set yields a simple way to find convergence plots.
function convtest(pv, hmax, nrefmax)

p, t, e = pmesh(pv,hmax,nrefmax)
p2, t2, e2 = p2mesh(p,t)
umax = fempoi2(p2,t2,e2)
errors = zeros(nrefmax)
for ncur = 0:(nrefmax-1)

pprox, tprox, eprox = pmesh(pv, hmax, ncur)
pprox2, tprox2, eprox2 = p2mesh(pprox, tprox)
uprox = fempoi2(pprox2, tprox2, eprox2)
errorarray = maximum(abs.(umax[1:size(uprox)[1]] - uprox))
#errors = [errors ; errorarray]
errors[ncur+1]=errorarray

end
return errors

end

which can be implemented by running
errors = convtest(pv,hmax,nrefmax)
clf()
loglog(hmax ./ [1,2,4,8], errors)
rates = @. log2(errors[end-1,:]) - log2(errors[end,:])

This yields the figure

and a rate of 0.016159505751054848.
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