Math 228 B Numerical Methods Edmund Chen

3 Problem Set 3

Problem 1.
(a) So we seek to write a function that can generate meshes and output

p, t, e = pmesh(pv,hmax,nref)

We are given the functions delaunay(p), all__edges(t), boundary_ nodes(t), tplot(p, t), and
inpolygon(p, pv). Following the instructions, we must first create a function that divides the boundaries
into nodes with a distance < h,,.. Julia has a convenient function for this

ceil(a/b)

which outputs a value < b which satisfies a%b = 0. Thus, we can do this using the distance formula and
appropriate iterate around the boundary lines.

function div_poly(polys_xyO,hmax)
x0=polys_xy0[1,1]
yO=polys_xy0[1,2]
ret = [x0 yO0]
for i = 2:size(polys_xy0) [1]
#println(polys([i,:])
x=polys_xyO0[i,1]
y=polys_xyO0[i,2]
len=sqrt ((x-x0) "2+ (y-y0)~2)
n=ceil(len/hmax)
for j=1:n-1
nx=(x0*(n-j)+x*j)/n
ny=(y0x*(n-j)+y*j)/n
#println(nx,",",ny)
ret = [ret; nx ny]
end
ret = [ret; x y]
x0=x
yo=y
end
return ret
end

This takes in the matrix pv of the polygon vertices, and the distance h,,., we seek to make the node
spacing. Next, we define a couple functions for the following parts, namely centroid for determining which
triangles are outside the polygon, area for determining which triangle to add another node, circumcenter
for determining where to add said node, and get_ new__tri to omit the triangles that are outside of the
domain. Firstly, we can find the centroid by using

1
with A,B,C being the 3 vertices of the triangle and doing the same for the y coordinate respectively. Quite
straightforwardly, this yields

function centroids(points, tri)
ret = reshape([],0,2)
for i = 1:size(tri)[1]
nx = (points[tril[i,1],1]+points[tril[i,2],1]+points[tri[i,3],1])/3
ny = (points([trili,1],2]+points([trili,2],2]+points(tri[i,3]1,2]1)/3
ret = [ret; nx ny]

14

Math 228 B Numerical Methods Edmund Chen

end
return ret
end

Next, we define the area function to find which triangle needs to have an additional node added. Note that
we really only need the index of the triangle with the largest area, the actual areas do not matter in our
situation. This can be calculated using the shoelace formula

0= (Au(By ~) + Bo(Cy — 4) + CulA, — By)

and constantly keeping a parameter on whichever triangle has the greatest area. Likewise, this is written by

function area(points,tri)

ret = []
max = 0.0
maxindex = -1

for i = 1:size(tri) [1]
na = (points[tril[i,1],1]*(points[trili,2],2]-points(trili,3],2])
+ points[tril[i,2],1]*(points[trili,3],2]-points([trili,1],2])
+ points[tri[i,3],1]*(points[trili,1],2]-points[tril[i,2],2]))/2
ret = [ret; nal
if na>max
max=na
maxindex=1i
end
end
return ret, maxindex, max
end

Lastly, to find the circumcenter, we simply need one value, unlike the functions area and centroid where we
indexed through all the triangles, we can determine the centroids through manipulation of their midpoints
and then finding the intersection of the 2 bisectors. This is shown by

function circumcenter(p, t, it)
ct = tlit,:]

dp1l = plctl2], :1 - plctlil, :]

dp2 = plct[3], :1 - pletl1]l, :]

midl = (plct[2], :1 + plctl1]l, :1)/2
mid2 = (plct[3], :1 + pletli]l, :1)/2
rhs = mid2-midl

s = [-dp1[2] dp2[2] ; dpi[1] -dp2[1]]1\rhs
cpc = midl + s[1] * [-dp1[2], dp1[1]]

return cpc
end

where it represents the index of the triangle that we are targeting in any certain scenario. Finally, to omit
the triangles that are determined to be outside of the polygon, we can simply copy the matrix over using
the function

function get_new_tri(inside,t)
t_new=zeros (Int64,0,3)
for i = 1:size(t)[1]
if insidel[i]

15

Math 228 B Numerical Methods Edmund Chen

t_new = [t_new;t[i,:]’]
end
end
return t_new
end

where inside is the vector outputted by the inpolygon function as given by the meshutilities. To put this all
together, we run the first iteration of delaunay outside the loop, as it has to take into account the division
of the boundary segments.

pvd = div_poly(pv,hmax)
t = delaunay(pvd)

centers = centroids(pvd,t)

inside = inpolygon(centers,pv)

t = get_new_tri(inside,t)

areas, maxindex, max = area(pvd,t)

Here, we have the established boundary nodes in pvd, and then identify and omit the triangles which are
outside the boundary using the inpolygon function given to us. After this is initialized, we can simply run
this in a loop until all areas are under h2 ., /2. This is expressed by

while (max > 0.5%hmax.”2)
added = circumcenter (pvd,t,maxindex)
pvd = [pvd; added’]
t = delaunay(pvd)
centers = centroids(pvd,t)

inside = inpolygon(centers,pv)

t = get_new_tri(inside,t)

areas, maxindex, max = area(pvd,t)
end

which simply keeps on re triangulating with the circumcenter node added of the largest triangle. From this,
we can plot the figure given in step g, as shown below.

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Lastly, we need to do the refinement. This can be accomplished by simply finding the average of the x y
nodes on each of the edges called in the all edges function. Note that we still have to run through which
triangles are inside the polygon to omit those outside the boundary.

16

Math 228 B Numerical Methods Edmund Chen

for i =

end

1:nref

edges = all_edges(t) [1]

for n = 1:size(edges) [1]
node = (pvd[edges([n,1],:] + pvd[edges[n,2],:1)/2.0
pvd = [pvd;node’]

end

t = delaunay(pvd)

centers = centroids(pvd,t)

inside = inpolygon(centers,pv)

t = get_new_tri(inside,t)

hence these 3 bits of code can be combined to make the function pmesh. A quick test of the given example
in the problem set confirms this works, we get the following result

1.0

0.8 1

0.6

0.4 1

0.2 1

0.0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

Quick test of some other polygons confirms this works reliably, and can plot functions.

1.0 7

0.8 1

0.6

0.4

0.2 1

0.0

1.0

0.8 1

0.6 q

0.4 4

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 10 -0.2 0.0 0.2 0.4 0.6 0.8 10 12

(a) Plotting Function (b) Different Polygon

Problem 2.

For this problem, we seek to propagate the solution of the Eikonal equations inwards. Using the discretization
that is provided in the slides, as we only have 2 dimensions i and j rather than the 3 used in the slides, we
can use the upwind method of the form

(b?j‘,tl = dijp — At (max(F7 O)V;;k + min(F, O)Vi_jk)

17

Math 228 B Numerical Methods

Edmund Chen

Where
V;‘—jk:[maX(Di‘r Z‘lﬁo) +In1n(D+I¢mk7) +maX(D y(szk?) +m1n(D+ ¢1]k7)]
Vik = [min(D~™* ?jkﬁ) —i—rrlax(D"”L(b”,€7 0)? + min(D~ Yol 0)? + max(DTY Bk 0)?]

First defining the the four forward and backward step approximations we can quite straightforwardly get

the functions

function D_mx(phi,i,j,h)
if i>1
return (phili-1,j]l-phil[i,j]1)/(-h)
else
return 0.0
end
end
function D_px(phi,i,j,h)
return (phili+1,j]l-phili,j]1)/(h)
end
function D_my(phi,i,j,h)
if §>1
return (phili,j-1]-phili,jl1)/(-h)
else
return 0.0
end
end
function D_py(phi,i,j,h)
return (phili,j+1]-phili,j1)/ ()
end

to evaluate the discretization for the upwinded step for ¢ we can see that only V* or V=

of the max, min function. This can be evaluated through the code

if fv>0.0
lap_p=sqrt (max(D_mx(phi,i,j,h),0) " 2+min(D_px(phi,i,j,h),0)
~2+max(D_my (phi,i,j,h),0) 2+min(D_py(phi,i,j,h),0)"2)
phi_ni[i,jl=phili,jl-dt*(fv*lap_p-1.0)

else

lap_m=sqrt (min(D_mx(phi,i,j,h),0) " 2+max(D_px(phi,i,j,h),0)
~2+min(D_my(phi,i,j,h),0) "2+max(D_py(phi,i,j,h),0)"2)
phi_ni[i,jl=phili,jl-dt*(fv*lap_m-1.0)

end

thus, we can use

N=size(phi) [1]
nz=spzeros (Int,N,N)
phi_nl=spzeros(N,N)
(I,J,V)=findnz (phi)
#println(nz)
for (i,j,v) in zip(I,J,V)
#global nz
nz[i,jl=1
if i>1
nz[i-1,j]l=1
if j>1

18

is evaluated since

Math 228 B Numerical Methods

Edmund Chen

nz[i-1,j-1]=1
end
if j<N
nz[i-1,j+1]=1
end
end
if i<N
nz[i+1,j]=1
if j>1
nz[i+1,j-1]1=1
end
if j<N
nz[i+1,j+1]=1
end
end
if j>1
nz[i,j-11=1
end
if j<N
nz[i,j+1]=1
end
end
(I1,J,V)=findnz(nz)

to calculate the iterative step using the level set method. To actually iterate this along time, we can define

a timestep and appropriately write

h = 1/100
N = ceil(Int,1.0/h)
phi=spzeros(N,N)
phi[floor(Int,0.2/h),floor(Int,0.2/h)]=1.0
phi[floor(Int,0.2/h),floor(Int,0.2/h)]=0.0
function F(x,y)
if y < 50
return 0.5
else
return 1
end
end
dt=0.0001
for k=1:500
global phi, F, dt, h
phi=cal_phi_n1(phi,F,dt,h)
println("t=",k*dt)
#println(phi)
println("-—--—--—-———- ")
end

From the equation provided, we can solve

F=mnxdt
7= Vo
Ve

and using numerical methods,
Pit1,j—Pi—1,j Pit+1,i+1—0
2h) 2h % dt

\/(¢i+1,j2*h¢i—l,j)2 + (¢>i+1,2jh+1*0)2

19

Math 228 B Numerical Methods Edmund Chen

For instance, if we just use the center point .5 .5 in the unit square, we can see that the solution propagates,
giving a contour graph of the form

100 7 0.050
801 0.049
60 0.048
0.047

20 0.046

0.045

Following this, we can use the test case provided to get the following for a departure of 0.2 0.2 and an arrival
of 0.8 0.8

100 - 0.0496
80 0.0480
60 - 0.0464
201 0.0448
20 0.0432

0.0416
0 20 40 60 80 100

Some of the other cases notes that the values of F are changing, which can be accounted for simply by
introducing a function for F, for instance

function F(x,y)
return 1 - 0.9 * (cos(4pi*x)*(2.71828) " (-10*((x-.5)"2+ (y-.5)72)))
end

or whatever is appropriate for F. For the piece wise function of F, we can see that this results in a staggered
contour around 0.5, as the speed values are different around this boundary.

0.0496
0.0480
0.0464
0.0448

0.0432

0.0416

20

Math 228 B Numerical Methods Edmund Chen

4 Problem Set 4

Problem 1.
(a) To get the Galerkin formulation, we first multiply each side of the original equation by a dummy function
v(z) and then take find the integral along the bounds.

" (z) = f(x) = 480x — 120

/ u"(x)v(x)dr = / f@)v(x)dx
Q Q
Integrating by parts 2 times and plugging in the domain that is specified in the problem yields
1 1
(D (1) — v(0)u” (0) — o' (1) (1) + v (0)u (0) — / (@) () d = / F@)v(z)dz
0 0

Since v(0) = v'(0) = /(1) = v(1) = 0, all the leftmost terms outside the integral evaluate to 0, and we get
the Galerkin formula desired in the problem,

/01 ' (x)0" (x)dx = /01 f(x)v(x)dx

(b) The basis function can be found by a manipulation of the conditions that it needs to fulfill, specifically
given the nodes that it has the different elements on K on, we have
(2 — zi41)?(ale — 2;) + 1)

(z — wiy1)?

pi(x) =

Expanding for the function a, we have

¢1(z) = — = —162% + 1222

as we are solving for the range between 0 and 0.5 for x in this specific basis function component.

(x—xig1)? (% +

1)
$a(z) = = 162 — 3622 + 241 — 4

(ICz' - l’i+1)2

as we are solving for the range between 0.5 and 1 for x in this specific basis function component. ¢; and ¢
denote the 2 basis function components.
(c) Evaluating the functions

1
a;j :/ ¢2/¢;’/d$
0

o2 e] = i

which can then be solved for the numerical solutions.

we get

21

Math 228 B Numerical Methods Edmund Chen

Problem 2.
We want to find a function that can solve the equation

~Vu(z,y) =1

on the domain that is provided in each of the three test cases, which will be triangulated through the pmesh
function established in the previous homework. As shown by the finite element notes, are Galerkin form is

given by
/Vuh -Vodr = / fvdm—i—j{gvds
Q Q r

However, as all our Neumann conditions are of the form
n-Vu=0

we won't have the last term shown here. Considering a single triangular element 7%, with vertices =¥, 25, 2%
we have the linear basis functions of the form

k _ k k k
(pa - Ca + ca:,ax + cy,ay

This can be solved as a linear system given by

1oaf oyt i‘ﬁ 1
k k _

o A R W) A

Lozg y3) \¢a 0

and replacing the RHS with respective columns of the 3x3 identity matrix to get a total of 9 coefficients. We
can solve this through introducing simple evaluations for both the RHS and LHS of this equation, writing it
into a function of the form

function coefficients(RHS, p, t, k)
LHS = [1 pltlk,1],1] pltlk,11,2]; 1 pltlk,2],1] pltlk,2]1,2]; 1 pltlk,3],1] pltl[k,3],2]]
coeff = LHS\RHS’
return coeff’

end

which returns the 9 coefficients in a 3x3 matrix for ease of indexing. The elementary matrix as referenced
in the notes then becomes
Ok Oph 0ok 9

k
¥ ko k k ko k
dx = Area”(c. . c cy ool
Tk O0xr Ox Oy Oy (w,a z8 1 Cya y,ﬁ>

k
Aaﬁ -

Using the previously established shoelace formula that was inside the pmesh function, we can get the area of
the triangle in question and the coefficients can be taken by the 3x3 matrix established above. Disregarding
the area, this value is given by

function element(coeffmatrix, a, b)
return coeffmatrix([a,2]*coeffmatrix[b,2] + coeffmatrix([a,3]*coeffmatrixl[b,3]
end

In order to implement this, we have to effectively run the stamping method for each of the triangles that we
have in the mesh given by the array ¢ from the pmesh output. After establishing the necesary coefficients,
we can use

Altlk,:1,tlk,:1] = Altlk,:]1,tlk,:]]+insert
#aa = areas[k]/3.0
bltlk,:1] = b[t[k,:]1].+ areas[k]/3.0

22

Math 228 B Numerical Methods Edmund Chen

to "stamp" the values of the local matrices into the global one. This results in a established code of

areas = triarea(p,t)
n = size(p) [1]
A = spzeros(n, n); b = zeros(n);
for k = 1:size(t) [1]
cm = [coefficients([1 0 0] , p, t, k) ;
coefficients([0 1 0] , p, t, k) ;
coefficients([0 O 1] , p, t, k)]
insert = [element(cm, 1, 1) element(cm, 1, 2) element(cm, 1, 3);
element(cm, 2, 1) element(cm, 2, 2) element(cm, 2, 3);
element(cm, 3, 1) element(cm, 3, 2) element(cm, 3, 3)]
insert *= areas/[k]
Altlk,:1,tlk,:1] = Alt[k,:],t[k,:]]+insert
#aa = areas[k]/3.0
bltlk,:1] = bltl[k,:]].+ areas[k]/3.0
end

After this, we establish the Dirichelt boundary conditions which are given along the nodes which are specified
by the vector e that was outputted from the pmesh function. We go along each node that is expressed in
this vector, and set uj ; = 0 which can be accomplished by the code

for k = 1:size(e)[1]
i=e[k]
Ali,:]1.=0.0
Ali,i]=1.0
b[i]=0.0

end

dropzeros! (4)

Combining this all we get the following code for the fempoi function as a whole

using SparseArrays

using LinearAlgebra

function coefficients(RHS, p, t, k)
LHS = [1 pltlk,1]1,1] pltlk,11,2]; 1 pltlk,2],1] plt(k,2]1,2]; 1 pltl[k,3],1] plt[k,3],2]]
coeff = LHS\RHS’
return coeff’

end

function element(coeffmatrix, a, b)
return coeffmatrixl[a,2]*coeffmatrix[b,2] + coeffmatrix[a,3]*coeffmatrix[b,3]

end

function fempoi(p, t, e)

areas = triarea(p,t)
n = size(p)[1]
A = spzeros(n, n); b = zeros(n);

for k = 1:size(t) [1]
cm = [coefficients([1 0 0] , p, t, k) ;
coefficients([0 1 0] , p, t, k) ;
coefficients([0 0 1] , p, t, k)]

insert = [element(cm, 1, 1) element(cm, 1, 2) element(cm, 1, 3);

element(cm, 2, 1) element(cm,
element(cm, 3, 1) element(cm,

23

2, 2) element(cm, 2, 3);
3, 2) element(cm, 3, 3)]

Math 228 B Numerical Methods Edmund Chen

insert *= areas/[k]

Altlk,:1,tlk,:1] = A[t[k,:],t[k,:]]+insert
#aa = areas[k]/3.0
bltlk,:]] = b[t[k,:]].+ areas[k]/3.0
end
for k = 1:size(e) [1]
i=e[k]
Ali,:]1.=0.0
Ali,i]l=1.0
b[i]=0.0
end
dropzeros! (A)
println(b)
println(A)

return A \ b
end

Using the 3 test cases that are provided on the problem sheet, we get roughly the same answers as shown
below.

1.0

0.8

0.6

0.4 1

0.2

0.0 -

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: square with left/bottom Dirichlet

24

Math 228 B Numerical Methods Edmund Chen

1.00

0.75 A

0.50

0.25

0.00 1

—0.25 A

—0.50 A

—0.75 A

-1.00 T T T
-1.0 -0.5 0.0 0.5 1.0

Figure 7: circle with Dirichlet

0.0 02 04 06 08 10
Figure 8: polygon with mix of both

Problem 3.

For the error function, the general formula for this we use the max norm of the difference between the u
values for the 2 nodes. We can do this simply because the respective specifications are simply adding on to
the end of the matrix. This results in simply comparing the truncated matrix of the higher nref solution
with the lower ones. The basic formula for max norm can be seen by

errorarray = maximum(abs. (umax[1:size(uprox) [1]] - uprox))
Repeating this for each of the iterations from 0 to nref, we get to output an array with the error vector.

function poiconv(pv, hmax, nrefmax)

pmax, tmax, emax = pmesh(pv, hmax, nrefmax)

umax = fempoi(pmax, tmax, emax)

errors = zeros (nrefmax)

for ncur = 0:(nrefmax-1)
pprox, tprox, eprox = pmesh(pv, hmax, ncur)
uprox = fempoi(pprox, tprox, eprox)
errorarray = maximum(abs. (umax[1:size(uprox) [1]] - uprox))
#errors = [errors ; errorarray]

25

Math 228 B Numerical Methods Edmund Chen

errors[ncur+l]=errorarray
end
return errors
end

Using the function provided by the problem set

hmax = 0.15
pv_square = Float64[0 0; 1 0; 1 1; 0 1; 0 0]
pv_polygon = Float64[0 O; 1 0; .5 .5; 1 1; 0 1; 0 0]

errors_square = poiconv(pv_square, hmax, 3)
errors_polygon = poiconv(pv_polygon, hmax, 3)
errors = [errors_square errors_polygon]

error2 = errors[l, :]

clf()
loglog(hmax ./ [1,2,4], errors)
rates = @. log2(errors[end-1,:]) - log2(errors[end,:])

we can see the convergence plots are given by

1074 1

:
4x1072 6x1072 10!

Figure 9: convergence plots

And get the rates of 1.930788150433111,1.1096771919045025 as the output as specified by the problem
statement.

26

Math 228 B Numerical Methods Edmund Chen

5 Problem Set 5

Problem 1.
(a) We want to find a Galerkin formulation for the given system, with the 3 boundary Neumann conditions.
To do this, we integrate on the respective boundaries and multiplying by a test function v, we get

/—VQuhvdxz/kQUhvdx
Q Q

—V2upvdr = / k2upvdz —&—7{
Q Q r

Thus, the Galerkin formulation is given by: Find a function u; € V}, that satisfies

(—tkup)vds + 7{ (2ik — ikup)vds

Lin

out

/ Vuy, - Vudz = / k2 upvdx +j{ (—ikup)vds +?{ (2ik — ikup)vds
Q Q Tout

Tin

(b) We replace uj, = Zjvzl ujp; and v = @;(x) yields

/Q[ﬁ]:ungaj]-V%(x)dx: ‘/Qk2[.§:lu‘j@j]§0id$—ﬁ

Jj=1

N N
k(Y ujpslpids +]{ (2ik — ik[Y _ ujip;))pids

out j—] Cin j=1

Factoring out the u vector with a rearrangement of terms and switching the summation and integral gives

N
Z Uj (/ Vi - Vojdr —k* [pipjde +ik (]{ wipjds + f{ <pi<pjds>) = Ziky{ pids
Q Q r r Cin

]:1 out in
thus, this gives the discretization of the form Au = b where A = K — k> M + ik(Boy; + Bin) and b = 2ikby,

K= / Vi, - Vojdr M= / pipjdx Bout :]{ pipids By :j{
Q Q r r

out in

pipids b;n :?{ pids
r

in

which can be seen in the discretization above.
(c) The transmit identity can be shown by u B,,;u and expanding

H(u) = /1‘ lu|?ds

H(u) = uf Boyiu = uiuj% pip;ds = 7{ (uipi)(ujp,)ds = 7{ |u|2ds
r r

Fou,t out out

as the hermitian transpose can be rearranged into u.

Problem 2.

(a) Quite straightforwardly, we can see that the solution u(z,y) = e~

* works since
—VQ(e*“”) _]{12(67””) =0

—ikx

All the boundary conditions hold aswell as v’ = —ike , using the appropriate normal vectors gives

[0, +1][—ike~** 0] = 0
[1,0][—ike™ 0] = —iku
[—1,0][—ike™ %, 0] = 2ik — iku
for the boundary conditions on I"yq1, [out, ['in the first 2 evidently hold for all x, while the last one holds
for specifically the z = 0 boundary on Ty, as ike~*(®) 4 jke=*(0) = 2k

27

Math 228 B Numerical Methods Edmund Chen

(b) Given the appropriate boundary conditions stated by the problem, we can use the all__edges function
to find the appropriate boundary edges whose nodes are on the given boundaries. This is accomplished by
looping through all the edges and testing whether it is a vertical edge on = = 0 for in, = 5 for out, and all
others are classified as wall
function waveguide_edges(p,t)

elist, bedgeindex = all_edges(t)
bnode = boundary_nodes(t)

ein = []

eout = []

ewall = []

for i = 1:size(bedgeindex) [1]

if pl[elist[bedgeindex[i],1],1] == 0 && plelist[bedgeindex[i],2],1] ==
ein = [ein; bedgeindex[il]
elseif p[elist[bedgeindex[i],1],1] == 5 && plelist[bedgeindex[i],2],1] == 5
eout = [eout; bedgeindex[i]]
else
ewall = [ewall; bedgeindex[i]]
end
end
ein = elist[ein,:]
eout = elist[eout,:]
ewall = elist[ewall,:]
return ceil.(Int,ein), ceil.(Int,eout), ceil.(Int,ewall)
end

(c) For K, we have the same formula from the PS4 FEM problem, as the dot product Vi, - Vi, can be
shown to be expressed as

n __
Kij—/T “z]—l—cylcy]d;v—Area(“z]—l—cyzcy])

n

for the basis functions ¢; and ¢;, and the triangle element 7. Next, we can find the mass matrix M to be
expressed by a product of 2 given basis functions i, j.

w5 () e5(x)

Following the quadrature expression that is given for quadratic elements, we can effectively evaluate the
mass matrix M with similar methods that are used in problem four. Thus, we have the form

n Area® 4z 4 x5 + 2 x1 + 4xo + 1 + x9 + 4
R B e P (e)

n

where f = ¢;p;. Each of the following line integrals are computed in similar ways. As we know that at the
boundaries I';,, and T'yy; that x is strictly constant, and y goes from 0 to 1, we can directly compute the
following line integrals as ¢;¢; can be computed numerically. Thus we get a 2 by 2 matrix for each set of
boundary point form an edge, which are then subsequently stamped onto their respective nodes.

Bout = f PiP; ds
T

out

Yj
= [Tk ko by

Yi

()y+(z a:]+cjcwz)xy+2y (cyzcj+cy] 7],€)

1 k k k k k 1 k v

+2y$(mz y]+cx,jcy,i)+czj mzxy+3ycyj Y,
Yi

28

Math 228 B Numerical Methods Edmund Chen

In this specific case, the x values would all be a constant above 0, as this is the I',,; boundary, whereas the
other in boundary would see the = values become 0. The element load vector is calculated in a similar way,
just with only one basis function. Our coefficient matrix is given by

function coeffmx(RHS, p, t, k)

nm = pl[tlk,1:3],:]
LHS = zeros(3,3)

for n = 1:3
LHS[n,:] = [1 om[n,1] nm[n,2]]
end
return (LHS\RHS)
end

and the individual entries for the matrices K and M are given by the functions

function kentry(cmx, i, j, ak)
return ak*(cmx[2,il*cmx[2,j] + cmx[3,i]*cmx[3,3])
end
function mentry(cmx, i, j, ak, p, t, k)
f(x,y) = (emx[1,i] + cmx[2,i]l*x + cmx[3,il*y)*(cmx[1,j] + cmx[2,jl*x + cmx[3,j]l*y)
result = 0.0
for n = 1:3
base = (p[tlk,1],:1 + pltlk,2],:1 + p[t(k,3],:1)/6 + pltlk,n],:]1/2
result = result + f(base[1],base[2])
end
result = (result*ak)/3
return result
end

On the other hand, the line integrals are a bit more complicated to compute, as we need to index the
two nodes 7,7 and the triangular element which they are both part of, k. This is done by introducing an
additional function specifically for such indexing

function find_bnd(e,t)
ind=intersect (hcat (getindex. (findall(x -> x==e[1], t),1)) ,hcat(getindex.(findall(x -> x==e[2],t),1)))
i=0
j=0
for k=1:3
if t[ind[1],k]l==e[1]
i=k
elseif t[ind[1],k]==e[2]
j=k
end
end
return ind[1],i,j
end

function boundsint(p, t, e)

k, i, j = find_bnd(e, t)
cmx = coeffmx(Matrix{Float64}(I, 3, 3), p, t, k)
cross = 0
f(x,y) = cmx[1,il*cmx[1,jl*y + x*xy*(cmx[1,jl*cmx[2,i] + cmx[1,il*cmx[2,j]) +
(y"2*(cmx[3,i]*cmx [1,3j] + cmx[3,jl*cmx[1,i1))/2 + (y™2*x*(cmx[2,i]*emx[3,j] +
cmx [2, j1*cmx [3,11))/2 + cmx[2,i]*cmx [2, jl1*x 2%y + (cmx[3,il*cmx[3,jI1*y~3)/3
h(x,y) = cmx[1,il*cmx[1,il*y + x*y*(cmx[1,il*cmx[2,i] + cmx[1,i]l*cmx[2,i]) +
(y"2*%(cmx [3,i]*cmx[1,i] + cmx[3,il*cmx[1,i]))/2 + (y 2*x*(cmx[2,i]*cmx[3,i] +
cmx [2,i]*emx[3,1]1))/2 + cmx[2,i]l*cmx[2,i]*x" 2%y + (cmx[3,i]*cmx[3,1]1*y~3)/3
g(x,y) = cmx[1,jl*cmx[1,jl*y + x*xy*(cmx[1,jl*cmx[2,j] + cmx[1,jl*cmx[2,j]) +
(y~2x(cmx[3, jl*cmx[1,j] + cmx[3,jl*cmx[1,3j1))/2 + (y™2*x*(cmx[2, j]*cmx[3,j] +
emx[2,j]*emx[3,3j1))/2 + cmx[2,jl*cmx[2, j1*x" 2%y + (cmx[3,jl*cmx[3,j]1*y"3)/3
if pltlk,il,2] > pltlk,jl,2]

cross = f(p[tlk,i],1],plt[k,i],2]) - £f(pltlk,il,1]1,plt[k,j]1,2]1)

id = h(pltlk,il,1],p[t[k,i],2]) - h(pltlk,il,1],plt[k,j]1,2])

jd = g(pltlk,il,11,plt[k,i]1,2]1) - g(pltlk,il,1],plt[k,jl1,21)
elseif pltlk,i],2] < pltlk,jl,2]

cross = f(pltlk,il,1],plt[k,j1,2]) - £(pltlk,i],1]1,plt[k,1i],2])

id = h(pltlk,il,1],plt[k,j],2]) - h(pltlk,il,1],plt[k,i],2])

jd = g(pltlk,il,11,plt[k,j1,2]1) - g(pltlk,il,1],plt[k,i],2])

29

Math 228 B Numerical Methods

Edmund Chen

end
return [id cross; cross jd]
end

which can be then combined by iterating through each element, creating our desired function,
element independently

function femhelmholtz(p, t, ein, eout)
areas = triarea(p,t)
n = size(p) [1]
K = spzeros(n,n); M = spzeros(n,n); Bin = spzeros(n,n); Bout = spzeros(n,n); bin = zeros(n);
for kn = 1:size(t)[1]
kinsert = zeros(3,3)
minsert = zeros(3,3)
cmx = coeffmx(Matrix{Float64}(I, 3, 3), p, t, kn)
for i = 1:3, j = 1:3
kinsert[i,j] = kentry(cmx,i,j,areas[kn])
minsert[i,j] = mentry(cmx, i, j, areas[knl, p, t, kn)
end
K[t[kn,:],t[kn,:]1] = K[t[kn,:],t[kn,:]]+kinsert
M[t[kn,:],t[kn,:]] = M[t[kn,:],t[kn,:]]+minsert
end
for m = 1:size(ein) [1]
einsert = boundsint(p,t,ein[m,:])
Bin[ein[m, :],ein[m,:]] = Bin[ein[m,:],ein[m,:]] + einsert
end
for m = 1:size(eout) [1]
einsert = boundsint(p,t,eout[m,:])
Bout [eout[m, :],eout[m,:]] = Bout[eout[m,:],eout[m,:]] + einsert
end
for m = 1:size(ein) [1]
binsert = loadvec(p,t,ein[m,:])
bin[ein[m,:]] = bin[ein[m,:]] + binsert’
end
return K , M , Bin , Bout , bin
end

this yields the desired matrices.

stamping each

(d) Through simply following the decomposition of A established in problem 1, we can use the function

function helmholtz(pv, hmax, nref, k)
p, t, e = pmesh(pv, hmax, nref)
ein, eout, ewall = waveguide_edges(p,t)
K, M, Bin, Bout, bin = femhelmholtz(p, t, ein, eout)

A = K-k~ 2xM+k*im* (Bout + Bin)
B = bin*2x*k*im
u = A\B

ur = real. (u)
"tplot(p,t,ur)"
return u

end

which yields the appropriate solutions, pictured to the left is nref = 1, the right is nref = 4

2.01 2.0
15 15
1.0 101
0.0 0.0
05 -0.5
1.0 -1.0
0 1 2 3 4 5 0 1 2 3 2

30

Math 228 B Numerical Methods Edmund Chen

To find the errors and convergence rate we compare each iteration with running the highest refined mesh
through the uexact function, yielding

function helmerrors(pv, hmax, nrefmax, k)
pmax, tmax, emax = pmesh(pv, hmax, nrefmax)
e=Base.MathConstants.e
f(x,y) = e.” (k*x*im)
umax = f(pmax[:,1],1)
errors = zeros(nrefmax)
for ncur = 1:(nrefmax)
"pprox, tprox, eprox = pmesh(pv, hmax, ncur)"
uprox = helmholtz(pv, hmax, ncur, k)
errorarray = maximum(abs. (umax[1:size(uprox)[1]] - uprox))
#errors = [errors ; errorarray]
errors[ncur]=errorarray
end
return errors
end

This gives us errors
[0.6488018138668635 0.17140607713178171 0.04336208511502913 0.010882557042220237]

which can be seen in the plot

1071 4

10-2

2x1072 3x10724x1072 6x1072 107!

and yields a convergence rate of 1.9944165497829438.

Problem 3.
(a) Quite straightforwardly, this is done with the consideration of the coordinates of the new mesh. We can
see an example solution in

2.09

151

1.0

(b) We introduce code to iterate past each of the following steps, in the form of

31

Math 228 B Numerical Methods

Edmund Chen

pv = [0
Hmx = []
for n = 1:50
k = 6+ 0.01*n
u, ur, Bout = helmholtz(pv, 0.2, 2, k)

H = conj(u’)*Bout*u
Hmx = [Hmx; H]

running this data through a semilog plot yields

1071

1072 §

1073 4

1074 §

1075 §

I

.0 0.0; 50; 51; 3.1 1; 3.1 0.2; 2.9 0.2; 2.91; 2.1 1; 2.1 0.2; 1.9 0.2; 1.9 1; 0 1; 0 0]

(c) The two solutions that represent the maximum and minimum of H(u) correspond to the maximum and
minimum of the magnitude of H, which is given by the k values at 13 and 36 for the least and highest,

respectively.

2.01

1.5

1.0

2.0

15

10

0.5

0.0

32

Math 228 B Numerical Methods Edmund Chen

Problem 4.

(a) First, we add the midpoints of each of the triangles, as specified here. It is rather straightforward to
add the midpoints of each of the edges, as there is a function used in pmesh for this, but it would be much
harder to find the appropriate indices to add to t2. Thus, I indexed a dictionary mid_point to store the
midpoints of each edge, according to the appropriate key. This makes it rather straightforward to avoid
duplicates, as all edges are unique, and can be easily appended to t2 through iteration.

elist, bedges, emap = all_edges(t)
mid_point=Dict ()
for k = 1:size(elist)[1]
x=(plelist[k,1],1]+plelist[k,2],1]1)/2.0
y=(plelist[k,1],2]+p[elist[k,2],2])/2.0
p=[p; x yl
mid_point[elist[k,2],elist[k,1]]=size(p) [1]
mid_point[elist[k,1],elist[k,2]]=size(p) [1]
end
t2=zeros(Int64,0,6)
for i = 1:size(t)[1]
t12=mid_point [t[i,1],t[i,2]]
t23=mid_point [t[i,2],t[i,3]]
t31=mid_point [t[i,3],t[i,1]]
t2=[t2; t[i,:]’ t12 t23 t31]
end

To find the boundary nodes, we get the boundary nodes from the original mesh using the boundary__nodes
function, and iterate through the respective keys in the mid_point structure to yield the additional midpoint
boundary nodes.

e2 = boundary_nodes (t)

for i=1:size(bedges) [1]
e=elist[bedges[i],:]
md=mid_point[e[1],e[2]]
e2=vcat(e2,md)

end

(b) In order to solve the Poisson equation for quadratic elements, we follow a similar outline as the linear
Poisson equation solver, but with slight changes to use quadratics. For a given triangle T} we have a 6x6
Vandermode matrix, as each basis function is given by

ooy ko, k k k E 2, k .2
pi(x) = + Cig® + Gy + €4y @Y + ¢ 28" + ¢ 2y

where every ¢ denotes some constant. Thus, for any given triangular element, the coefficients are found by

k k k, k k2 k2 k Lo
1 zy yf xyr x(° v Cla

and the corresponding coefficient matrix can be seen to model the 6 basis functions that satisfy J;; for the
6 points for each triangle. To find this result is quite straightforward - we introduce the function

function coeff2(RHS, p2, t2, k)
nm = p2[t2[k,1:6],:]
LHS = zeros(6,6)

for n = 1:6
LHS[n,:] = [1 nm[n,1] nm[n,2] nm[n,1]*nm[n,2] nm[n,1]1°2 nm[n,2]"2]
end
return (LHS\RHS), LHS
end

33

Math 228 B Numerical Methods Edmund Chen

Next, we need to establish a function that can evaluate the appropriate quadrature for this problem. The
problem statement gives that

LA >
flx Zf > (x/6 + 6i5%;/2)
Ty j=1
_Ak 4r1 + 19 + 73 T1 + 4o + 73 T + To + 43

‘Ef(f(““‘?;““*)+-f(6)+ f(6)
To implement this, we find f to be

%% 4 8@1 8@3 dx

Af =
J e O0x Ox oy Oy
= /T ((Cf,'l‘ + Cf,ryy + 21’6?,12)(6;.% + C?,zyy + 2IC§,12) + (Cf,y + Cf,zyx + chfin)(+ C] ryz + 2yc§7y2)) dx
&
Ak 4561 +I2+I3 T +4£C2+Ig T +Z‘2+4I3
~ o (f(———F—) + f()+ f()
3 6 6 6
f:x2(c7l,'cx26k;c2+C§a:ycé'€¢uy)+y2(v 2 2+Cza:y _I;J,y)
—|—:cy(2c 22Ci xy-l-QC IQCJ zy+20 my—i—2c Jzy) +m(20 I—|—2c zzcm +cf ycfxy+c§7yc§zy)
k
+y(20i,y2 j,y+20 zczu+clx]wy+c]w zwy)+czx]w+czycjy

Please forgive any typos in f, intended to be the expansion of the function above. Thus, the function is as
follows

function gquad(k, i, j, cmx, p2, t2, ak)

f(x,y) = 4x"2%(cmx[5,il*cmx[5,j]) + 2x*y*(cmx[5,i]l*cmx[4,j] +
cmx [5,jI*cmx[4,i]) + y~2*%(cmx[4,i]l*cmx[4,j]) + 2x*(cmx[5,il*cmx[2,j] +
cmx [6,j1*cmx [2,1i]) + y*(cmx[2,i]l*cmx[4,j] + cmx[2,jl*cmx[4,i]) +
cmx [2,i]*cmx [2,]

g(x,y) = 4y 2x(cmx[6,i]*cmx[6,j]) + 2x*y*(cmx[6,i]l*cmx[4,j] +
cmx [6,jI*xcmx[4,1]) + x"2*(cmx[4,il*cmx[4,j]) + 2y*(cmx[6,i]*cmx[3,j] +
cmx[6,j1*cmx[3,1]) + x*(cmx[3,il*cmx[4,j] + cmx[3,j]l*cmx[4,i]) +
cmx [3,i]*emx [3, 5]

result = 0
for n = 1:3
base = (p2[t2[k,1],:] + p2[t2[k,2],:] + p2[t2[k,3],:1)/6
= base + p2[t2[k,n],:]1/2
result = result + f(num[1],num[2]) + g(num[1],num[2])
end
result = (result*ak)/3
return result
end

Similarly, we need to do the same for

b:/ gOidX
Ty

where we define a function gquad2 which performs a similar function, shown by

function gquad2(k, i, cmx, p2, t2, ak)
h(x,y) = cmx[1,i] + x*cmx[2,i] + y*cmx[3,i] + x*y*cmx[4,i] + x"2*cmx[5,i] + y~2*cmx[6,1i]
result = 0
for n = 1:3
base = (p2[t2[k,1],:] + p2[t2[k,2],:] + p2[t2[k,3],:1)/6
num = base + p2[t2[k,n],:]1/2
result = result + h(num[1],num[2])
end
result = (result*ak)/3
return result
end

34

Math 228 B Numerical Methods Edmund Chen

To assemble the fempoi2, we iterate past all the 36 different basis function 4,j combinations, for each
triangle element T}, and then stamp the resulting matrix into the master matrix A, and similarly for b. The
Dirichlet conditions are imposed in the same way as before, setting the appropriate elements in both stiffness
matrices.

function fempoi2(p2, t2, e2)
areas = triarea(p2,t2)
n = size(p2)[1]
A = spzeros(n,n); b = zeros(n);
for k = 1:size(t2)[1]
insert = zeros(6,6)
insert2 = zeros(6)
cmx, lhss = coeff2(Matrix{Float64}(I, 6, 6), p2, t2, k)
for i = 1:6
for j = 1:6
insert[i,j] = gquad(k,i,j,cmx,p2,t2,areas[k])
end
insert2[i] = gquad2(k,i,cmx,p2,t2,areas[k])
end
Alt2[k,:],t2[k,:1] = A[t2[k,:],t2[k,:]]+insert
bl[t2[k,:]1] = b[t2[k,:]]+ insert2
end
for k = 1:size(e2)[1]
i=e2[k]
Ali,:]1.=0.0
Ali,i]l=1.0
b[i]=0.0
end
return A\b
end

Running this for the most refined case, n = 4 we get the following solution

1.0

0.8

0.6

0.4

0.2

0.0 -

and a less refined mesh can be seen by

35

Math 228 B Numerical Methods Edmund Chen

1.0

0.8 1

0.6 1

0.4

0.2 1

0.0 -

(d) Modifying the poiconcv code from the last problem set yields a simple way to find convergence plots.

function convtest(pv, hmax, nrefmax)
p, t, e = pmesh(pv,hmax,nrefmax)
p2, t2, e2 = p2mesh(p,t)
umax = fempoi2(p2,t2,e2)
errors = zeros(nrefmax)
for ncur = 0:(nrefmax-1)
pprox, tprox, eprox = pmesh(pv, hmax, ncur)
pprox2, tprox2, eprox2 = p2mesh(pprox, tprox)
uprox = fempoi2(pprox2, tprox2, eprox2)
errorarray = maximum(abs. (umax[1:size(uprox)[1]] - uprox))
#errors = [errors ; errorarray]
errors [ncur+l]=errorarray
end
return errors
end

which can be implemented by running

errors = convtest(pv,hmax,nrefmax)

clf()

loglog(hmax ./ [1,2,4,8], errors)

rates = @. log2(errors[end-1,:]) - log2(errors([end,:])

This yields the figure

4x1072 6x1072 10-1 2x107! 3x107!

and a rate of 0.016159505751054848.

36

UC Berkeley Math 228B, Spring 2019: Problem Set 3

Due March 7
1. Write a Julia function with the syntax
p, t, e = pmesh(pv, hmax, nref)

which generates an unstructured triangular mesh of the polygon with vertices pv, with edge lengths
approximately equal to Apayx/2"f, using a simplified Delaunay refinement algorithm. The outputs are
the node points p (N-by-2), the triangle indices t (T-by-3), and the indices of the boundary points e.

(a) The 2-column matrix pv contains the vertices x;,y; of the original polygon, with the last point
equal to the first (a closed polygon).

(b) First, create node points along each polygon segment, such that all new segments have lengths
< hmax (but as close to hmax as possible). Make sure not to duplicate any nodes.

(¢) Triangulate the domain using the delaunay function in the mesh utilities.
(d) Remove the triangles outside the domain (see the inpolygon command in the mesh utilities).

(e) Find the triangle with largest area A. If A > h2,_ /2, add the circumcenter of the triangle to the
list of node points.

—~
—
=

Retriangulate and remove outside triangles (steps (c)-(d)).

(g) Repeat steps (e)-(f) until no triangle area A > h2 /2.

(h) Refine the mesh uniformly n.es times. In each refinement, add the center of each mesh edge to
the list of node points, and retriangulate. Again, make sure not to duplicate any nodes, using e.g.
the command unique(p, dims=1).

Finally, find the nodes e on the boundary using the boundary_nodes function. The following commands
create the example in the figures. Also make sure that the function works with other inputs, that is,
other polygons, hmax, and npes.

pv=1[00;10; .5 .5;11;01; 00]
p, t, e = pmesh(pv, 0.2, 1)
tplot(p, t)

ava
S
aVavy
NS
S
SR
) :"'.

(]
0
2

A
AV,
)

O]
=0,
Y,
/\
"
KE

:5
o
7
o

N/
N
N
s
""
\WaV,
N/
5
o

AN
O

i
%

3
.

2. Consider the Eikonal equation for first arrivals/optimal path planning problems. The equation can be
written

F(x,y)|V¢)(x,y)| =1,

where F'(z,y) is the speed function. We will use the solution ¢(x,y) to determine the optimal path
from the departure point (zp,yp) to the arrival point (za,ya), where ¢(xa,ya) = t. The level set
with value ¢ of the function ¢(x,y) gives the maximum distance away from our departure point that
can be traveled in a time ¢t. In addition, the optimal path between the departure point and the arrival
point is determined by traveling in the normal direction of the level sets.

We will solve the Eikonal equation using a level set method and a time-stepping approach. The equation

qbt + F|v¢‘ =]-a Qb(-TD,yD) =0

is integrated in time until a steady-state is reached. This is not an efficient method for solving the
Eikonal equation, but it will be sufficient for this problem set (and it illustrates how to solve more
general time-dependent problems). If you are interested in more sophisticated solvers, feel free to
implement the more efficient fast marching method instead.

(a) Write a computer code to solve the Eikonal equation on the unit square z,y € [0,1]. Use the
first-order upwinded scheme in space, and appropriate treatment of the boundaries.

(b) Write a computer code to find the optimal path between the departure/arrival point, by solving
the ODE dr/dt = n, where r is the current position on the path and n is the normal vector.

(c) Run your codes with grid spacing h = 1/100 for the following cases and plot both the solutions
(e.g. as contour curves of ¢(x,y)) and the optimal paths:

Case 1: (zp,yp) = (0.2,0.2), (z4,ya) = (0.8,0.8), F(x,y) =1 (for testing).
Case 2: (zp,yp) = (0.2,0.2), (z4,ya) = (0.8,0.45), and

Fla.g) 1.0 ify > 0.5,
T,Y) =
Y 0.5 ify<0.5.

Case 3: (zp,yp) = (0.2,0.2), (z4,y4) = (0.8,0.8), and
F(z,y) =1—-0.9- cos(4rx) - e~ 10((z—5)*+(y—0.5)%)

Case 4: Make up your own speed function F', only returning the values 0.01 and 1 but with a non-trivial
optimal path.

Code Submission: Submit a zip-file on bCourses which contains a Julia file named pmesh.jl where all
requested functions are defined (that is, pmesh), and any other supporting functions. Alternatively, submit
a Jupyter notebook which will define this function when executed.

UC Berkeley Math 228B, Spring 2019: Problem Set 4

Due March 21

1. Counsider the boundary value problem

" (x) = f(x) = 4802 — 120, for z € (0,1) (1)
w(0) =u'(0) =u(l) =4'(1) =0 (2)

(a) Derive the following Galerkin formulation for the problem (1)-(2) on some appropriate function
space Vj,: Find up € Vj, such that

1 1
/ uj (z)0" (z) dox = / f(z)v(z)dz, Yv € V. (3)
0 0

(b) Define the triangulation 7}, = {K1, K2}, where K1 = [0, 1] and K5 = [3,1], and the function space
Vi ={v e C([0,1]) :v|, € P3(K) VK € T, v(0) =2'(0) = v(1) =2'(1) = 0}. (4)

Find a basis {¢;} for V},. Hint: Consider Hermite polynomials on each element.

(c) Solve the Galerkin problem (3) using your basis functions. Plot the numerical solution uy(z) and
the true solution u(x).

2. Implement a Julia function with the syntax
u = fempoi(p,t,e)

that solves Poissons’s equation —V2u(z,y) = 1 on the domain described by the unstructured triangular
mesh p,t. The boundary conditions are homogeneous Neumann (n - Vu = 0) except for the nodes in
the array e which are homogeneous Dirichlet (u = 0).

Here are a few examples for testing the function:

Square, Dirichlet left/bottom

pv = Float64[0 0; 1 0; 1 1; 0 1; 0 0]

p, t, e = pmesh(pv, 0.15, 0)

e = el@. (ple,1] < 1e-6) | (ple,2] < 1e-6)]
u = fempoi(p, t, e)

tplot(p, t, u)

Circle, all Dirichlet

n = 32; phi = 2pi*(0:n)/n

pv = [cos.(phi) sin. (phi)]
p> t, € = pmesh(pv, 2pi/mn, 0)
u = fempoi(p, t, e)

tplot(p, t, u)

Generic polygon geometry, mixed Dirichlet/Neumann
x =0:.1:1

y = 0.1%(-1).7(0:10)

pv=I[xy; .5 .6; 0 .1]

ps t, € = pmesh(pv, 0.04, 0)

e = el@. ple,2] > (.6 - abs(ple,1] - 0.5) - 1e-6)]
u = fempoi(p, t, e)

tplot(p, t, u)

Turn page —

3. Implement a Julia function with the syntax
errors = poiconv(pv, hmax, nrefmax)

that solves the all-Dirichlet Poisson problem for the polygon pv, using the mesh parameters hmax and
nref = 0,1,...,nrefmax. Consider the solution on the finest mesh the exact solution, and compute
the max-norm of the errors at the nodes for all the other solutions (note that this is easy given how the
meshes were refined — the common nodes appear first in each mesh). The output errors is a vector of
length nrefmax containing all the errors.

Test the function using the commands below, which makes a convergence plot and estimates the rates:

hmax = 0.15
pv_square = Float64[0 0; 1 0

g il
pv_polygon = Float64[0 0; 1 0;

1; 0 1; 0 0]
.5 .55 11; 01; 0 0]

errors_square = poiconv(pv_square, hmax, 3)
errors_polygon = poiconv(pv_polygon, hmax, 3)
errors = [errors_square errors_polygon]

clf()
loglog(hmax ./ [1,2,4], errors)
rates = Q. log2(errors[end-1,:]) - log2(errors([end,:])

Code Submission: Submit a zip-file on bCourses which contains a Julia file named fempoi.jl where
all requested functions are defined (that is, fempoi and poiconv), and any other supporting functions.
Alternatively, submit a Jupyter notebook which will define these functions when executed.

UC Berkeley Math 228B, Spring 2019: Problem Set 5

Due April 11

In this problem set, you will study two extensions of the simple piece-wise linear Poisson solver fempoi
from the previous problem set. First, you will extend the equations to solve the Helmholtz equation, for
simulation of wave propagation in waveguides. Next, you will extend the Poisson solver to use quadratic
elements instead of linear.

Time-harmonic Waveguide Simulations

1. Consider the following 2-D Helmholtz problem, for a given wave number k with normalized propagation
velocity, and so-called Sommerfeld radiation conditions at the in/out boundaries:

—V%u — k*u =0, in Q, (1)

n-Vu =0, on I'yan (2)
n - Vu +iku =0, on Iout (3)
n - Vu + iku = 2ik, on I, (4)

Here, the domain boundary I" = 9 is decomposed into the three parts I' = I'yan U lout U I'in. For a
computed solution u, we will also calculate its intensity at the output boundaries:

H(u) = /1“ lul? ds, (5)

where | - | is the complex absolute value.

(a) Derive a Galerkin finite element formulation for (1)-(4), for an appropriate space V} of continuous
piece-wise linear functions.

(b) Show that the discretized system can be written in the form Au = b, where
A=K —k*M +ik(Bi, + Bow) and b= 2ikby, (6)

for real matrices K, M, B, Bouwt and a vector by,, which do not depend on the wave number k.
Give explicit expressions for the matrix/vector entries, involving the basis functions ¢;(x) for the
space Vj.

(c) Show that the transmitted intensity (5) for a finite element solution u can be calculated as H (u) =
H
u Boupu.

Turn page —

2. For the implementation, consider a model test problem with wave number k = 6 and a straight channel
domain of dimensions 5 x 1:

N={0<x<50<y<1} (7)
Lin={z=0,0<y <1} (8)
Lot ={x=50<y <1} (9)
Fyan ={0<2z<5,y=00ry=1} (10)

(a) Show that an exact solution to the Helmholtz problem (1)-(4) for the domain (7)-(10) is given by
Uexact (T,Y) = etk

(b) Write a function which for a given triangular mesh p, t identifies the boundary edges corresponding
to the wall, the in, and the out boundaries, respectively:

ein, eout, ewall = waveguide_edges(p, t)

Use the function all_edges() in the Mesh utilities notebook on the course web page to find all
mesh edges, then assume that the in-boundary consists of all vertical edges with = 0, and that
the out-boundary consist of all vertical edges with z = 5.

(c) Write a function that computes the matrices K, M, Bin, Bous and the vector by, for a given mesh:

K, M, Bin, Bout, bin = femhelmholtz(p, t, ein, eout)

(d) Solve the discretized problem on the meshes generated by

pv=1[00; 50;51; 01; 0 0]
p, t, € = pmesh(pv, 0.3, nref)

where nref ranges from 1 to 4. Compute max-norm errors using the exact solution Uexact, plot
errors vs. mesh size in a log-log plot, and estimate the order of convergence.

3. Finally, you will use your Helmholtz solver to compute a frequency response for a waveguide with two
slits, see figure below. The waveguide is again of dimensions 5-by-1, and the slits are 0.2 units wide
and 0.8 units deep, centered at x =2 and =z = 3.

1

0.8

0.6

0.4

0.2
15 2 25 3 35

[05 1

4 45 5

(a) Create a mesh for the domain using pmesh, with hmax = 0.2 and nref = 2.

(b) To look for resonance phenomena around k ~ 27, solve for a range of wave numbers k between
k =6 and k = 6.5, in steps of Ak = 0.01. For each k, solve the problem and calculate H(u). Plot
H vs. k in a semi-log plot.

(¢) Plot two of your solutions using tplot of the real part, for the wave numbers k corresponding to
the smallest and the largest value of H(u).

Turn page —

