Parallel Helmholtz Equation Wave Propagation
through Waveguides

Edmund Chen

CS 315B

December 14, 2022

Outline

Problem Formulation

Problem Formulation

Problem Statement

» Consider the time-independent component rendered from the wave
equation under separation of variables

— Sommerfeld radiation condition for unique radiating solution
» Models wave propagation within waveguides

—Vu —k*u=f on 2
n-Vu=20 on ['yan

n-Vu+iku=0 on I'out

n-Vu+iku =2tk on I,

Problem Formulation

Galerkin Finite Element Method

» Looking for approximate solution in space of linear continuous
functions V}, on some mesh T}, (Bubnov-Galerkin)

Vi ={v e C%Q): v, € PI(K)VK € Ty}

» We seek some approximate solution uy with the aid of a test
function vy, both within V},

— Impose the weighted average with v, over each element and solve

Problem Formulation

Galerkin Finite Element Method

» Integrate on domain, pop out boundary conditions, apply divergence
theorem to get a weak formulation of the PDE

/—V2uhde:/k’2uhde
Q Q

/Vuh~Vde:/k2uhde+7{ (—ik:uh)vds—l—% (2ik—ikup)vds
Q Q r r

out in

» Hence the problem, find u;, € V}, which satisfies this

Problem Formulation 5

Galerkin Finite Element Method

> Replace the approximate solution with a weighted average of basis
functions, and the test function with a basis function, ¢(x)

N
“hZE:Uj%' vV=9i
=1

» Gives the discretization of form

N N
/[ZUijj]-ch(Z)dQ=/ K[> ujpsleidQ—
Q5= 2 =1
N

N
§ kY ueleds+ f @ik —ik(Yue)eds

=1 Cin j=1

Problem Formulation

Galerkin Finite Element Method

Factoring out admits a discretization of form Au = b where

A=K —k*M +ik(Bou; + Bin) b = 2ikb,

N
DU (/ Vi - V;dQ *kQ/ Pip;dd + ik (j{ <Pi<des+?{ wsodeD
£ Q Q Tout Tin

=1
= 2ik% pids
r

in

K= [Vo Vo2 M= [pigid? Bou=¢ pipids
Q Q

out

Bin =?{ pipjds bin =f pids
r r

in in

Problem Formulation

Basis functions

» For some triangle element on the mesh 7% bounded by ¥, 25 2%

> Corresponding basis functions satisfy o} (z%) = d;;

» Say we have linear basis functions of the form ¥ = cq + 1z + oy,
we need to solve the following system for each triangular element on

the mesh
1 2F ¥\ (o 1 00
1 =(0o 10
c2 0 0 1

Problem Formulation

Numerical Quadrature

» Use Gaussian quadrature to evaluate integrals which cannot be
solved analytically with x; the roots of the nth Legendre polynomial

/1 f@)dr ~ iwifm)

» For instance, K becomes (for mesh element T%)

Kk:/chi-Vgpde
Q

= / 0200205 + OypiOyp;dQ = Area(Tk)(cLich +c2,ic2,5)
Tk

Problem Formulation

Process

So basically, the process is as follows

» generate a mesh

» for every triangular element

calculate area

calculate basis functions (linear system)

calculate resulting mass, stiffness, etc. matrices w/ quadrature
stamp it into a global matrix

» assemble into Au=b

» solve for u, solution is real part of u

Naturally, many loops and systems that can be parallelized. Note the
resulting system is very sparse.

Problem Formulation 10

Parallel Implementation

Parallel Implementation

Outline

11

Meshing

- Well formed triangular mesh

- Use delaunay refinement for
meshing, then iteratively
approve upon it

- See “mesh.mov” in submission

P ppY
7

w

Nz =

https://docs.google.com/file/d/151N3WWJzjudVne6huEXIR4_k7qjwp8vI/preview

Meshing Parallelization

Parallelize the parts
where we are identifying
the set of poor quality
triangles

Rest is hard to negotiate
since triangulation is
black-boxed and adding
multiple circumencenters
at once risks inconsistent
element sizes

function Ruppert(points, segments, threshold) is
T := DelaunayTriangulation(points)
Q0 := the set of encroached segments and poor quality triangles

while QO is not empty: // The main loop
if QO contains a segment s:
insert the midpoint of s into T
else QO contains poor quality triangle t:
if the circumcenter of t encroaches a segment s:
add s to Q;
else:
insert the circumcenter of t into T
end if
end if
update QO
end while

return T
end Ruppert.

Element Matrices Construction

- Use numerical quadrature for each

- Main loop index on numpy matrix e ————
. . k, i, j = find_bnd(e, t)
dlmenS|OnS cmx = coeffmx(np.identity(3), p, t, k)
f = lambda x,y:((cmx[0,i] + cmx[1,il*x)*xy + (cmx[2,i]xy**2)/2.0)
- Internally use lambda functions to g = lambda x,y:((cmx[0,j] + emx[1,jl%x) %y + (cmx[2,]]%y**2)/2.0)
calculate appropriate values and “stamp” if pltlk,il,11 > pltlk,jl,11:
. . id = f(pltl[k,il,0],plt[k,i],1]) - f(plt(k,il,0],p[t[k,j],1])
into global matrix jd = g(pltik,il,01,pltlk,il,1]) - g(pltlk,il,0],plt(k,j1,1])

- Elements need to be SufﬁCienﬂy = f(pltlk,il,0l,pltlk,j1,11) - f(pltlk,il,0]1,pltlk,i],1])
.) jd = g(pltlk,il,e],pltlk,jl1,1]1) - g(pltlk,il,0],plt[k,1i],
removed from their neighbors to
avoid having two threads fighting
over same parts of global matrix

return np.array([id, jdl) #review

Basis functions and Numerical quadrature calculation

- Cunumeric and other parallel libraries can further parallelize certain
processes within this
- Prefer to use operations with numpy arrays as opposed to naive loops

Overarching Linear System

Very sparse linear system to be
solved

Symmetric, as it is a nxn matrix
with n elements on each side
Hard to exactly transform to
strictly diagonal matrix due to
unstructured mesh making
elements spatially nearby each
other far apart index-wise

Parallelization Comments

- Cunumeric does not parallelize most linalg operations
- Solving the actual linear system incurs a heavy penalty due to this

- System is very sparse, but since numpy does not natively
implement sparse matrices, converted to scipy for final linear

system solve
- Sparse matrices implemented from SciPy

Parallelization Comments

- Cunumeric does not parallelize most linalg operations
- Solving the actual linear system incurs a heavy penalty due to this

- System is very sparse, but since numpy does not natively

Implement sparse matrices, need to solve a dense matrix
- Sparse matrices implemented from SciPy

Numerical Results

- We see resonance phenomena
for different wavenumbers, here
for 6 - 6.5 range

- Ran for a mesh element quality of
0.2 and an uniform refinement 2x

over

Results

- Ran on g4dn.xlarge on AWS (1 NVidia T4 CPU) with cunumeric, python, and
julia implementations

- Roughly 3x speedup on critical section of matrix stamping on
Python/cuNumeric with 1 GPU

- Not great admittedly, cost incurred from dense matrix solve
- Should have converted at end into sparse matrix

done with mesh_import()
done with waveguide edges()
done with femhelmholtzi1()
done with femhelmholtz2()
done with femhelmholtz3()

done with femhelmholtz4()

femhelmholtz execution time: 7.039739370346069 seconds

A\B execution time: 22.86920189857483 seconds

Overall execution time: 32.64009618759155 seconds

.04402865 -0.49637759 -1.91578359 ... 0.90199697 1.00425585
.54496894

Results

- Also parallelized with Numba to test performance (helmholtz-numba.py

- Fast with vectorization and compilation to ¢ code optimizations
5s elapsed baseline

Results

- Also implemented and ran on Julia language (CPU parallelization)
- 1 GPU accelerant roughly correspond to 3x CPU accelerant

generating mesh:
4,704548 seconds (15.24 M allocations: 977.409 MiB, 4.65% gc time, 2.62% compilation time)

finding mesh boundaries:
0.340401 seconds (931.75 k allocations: 119.770 MiB, 3.48% gc time, 61.24% compilation time)

generating constituent matrices:
28.525171 seconds (18.06 M allocations: 144.674 GiB, 5.27% gc time, 4.72% compilation time)

solving linear system:
1.181536 seconds (4.29 M allocations: 299.368 MiB, 14.62% gc time, 88.33% compilation time)

Further Improvements

Further Improvements

Outline

14

Local Discontinuous Galerkin Method

» The main obstacle for enabling more parallelism is the basis
functions ;(x;) = d;; needing to be continuous, hence the
necessary synchronization when assembling global matrix and solving
for coefficients on every element

» Discontinuous-Galerkin methods allow these to be piecewise
constant functions, making the mass matrix block-diagonal since
there are no inter-element basis function dependencies

k=11i=0

Further Improvements 15

Local Discontinuous Galerkin Method

» Cannot be directly done on anything higher than first-order spatial
derivative

» Rewrite into a system of first-order equations and choose fluxes
appropriately, hence the Local DG method

—Vo = k2u Vu=o

» This becomes embarrassingly parallel because | can parallelize
across elements in constructing elemental submatrices matrices
without race conditions on stamping into the same place on the
global matrix

Further Improvements

16

Parallel Unstructured Mesh Generation

» Most naive way to pre-section mesh into a few blocks so at least one
process can take each block

» Falls apart for more complicated unstructured meshes unfortunately

Further Improvements

17

	Problem Formulation
	Parallel Implementation
	Performance Benchmarking
	Further Improvements

