
Parallel Helmholtz Equation Wave Propagation
through Waveguides

Edmund Chen

CS 315B

December 14, 2022



Outline

Problem Formulation

Parallel Implementation

Performance Benchmarking

Further Improvements

Problem Formulation 2



Problem Statement

I Consider the time-independent component rendered from the wave
equation under separation of variables

– Sommerfeld radiation condition for unique radiating solution

I Models wave propagation within waveguides

�r2u� k2u = f on ⌦

n ·ru = 0 on �wall

n ·ru+ iku = 0 on �out

n ·ru+ iku = 2ik on �in

Problem Formulation 3



Galerkin Finite Element Method

I Looking for approximate solution in space of linear continuous

functions Vh on some mesh Th (Bubnov-Galerkin)

Vh = {v 2 C0(⌦) : v|k 2 P1(K)8K 2 Th}

I We seek some approximate solution uh with the aid of a test

function vh, both within Vh

– Impose the weighted average with vh over each element and solve

Problem Formulation 4



Galerkin Finite Element Method

I Integrate on domain, pop out boundary conditions, apply divergence

theorem to get a weak formulation of the PDE

Z

⌦
�r2uhvd⌦ =

Z

⌦
k2uhvd⌦

Z

⌦
ruh·rvd⌦ =

Z

⌦
k2uhvd⌦+

I

�out

(�ikuh)vds+

I

�in

(2ik�ikuh)vds

I Hence the problem, find uh 2 Vh which satisfies this

Problem Formulation 5



Galerkin Finite Element Method

I Replace the approximate solution with a weighted average of basis

functions, and the test function with a basis function, '(x)

uh =
NX

j=1

uj'j v = 'i

I Gives the discretization of form

Z

⌦
[
NX

j=1

ujr'j ] ·r'i(x)d⌦ =

Z

⌦
k2[

NX

j=1

uj'j ]'id⌦�

I

�out

ik[
NX

j=1

uj'j ]'ids+

I

�in

(2ik � ik[
NX

j=1

uj'j ])'ids

Problem Formulation 6



Galerkin Finite Element Method

Factoring out admits a discretization of form Au = b where

A = K � k2M + ik(Bout +Bin) b = 2ikbin

NX

j=1

uj

✓Z

⌦
r'i ·r'jd⌦� k2

Z

⌦
'i'jd⌦+ ik

✓I

�out

'i'jds+

I

�in

'i'jds

◆◆

= 2ik

I

�in

'ids

K =

Z

⌦
r'i ·r'jd⌦ M =

Z

⌦
'i'jd⌦ Bout =

I

�out

'i'jds

Bin =

I

�in

'i'jds bin =

I

�in

'ids

Problem Formulation 7



Basis functions

I For some triangle element on the mesh T k
bounded by xk

1 , x
k
2 , x

k
3

I Corresponding basis functions satisfy 'k
i (x

k
j ) = �ij

I Say we have linear basis functions of the form 'k
i = c0 + c1x+ c2y,

we need to solve the following system for each triangular element on

the mesh

0

@
1 xk

1 yk1
.
.

1

A

0

@
c0 . .
c1
c2

1

A =

0

@
1 0 0
0 1 0
0 0 1

1

A

Problem Formulation 8



Numerical Quadrature

I Use Gaussian quadrature to evaluate integrals which cannot be

solved analytically with xi the roots of the nth Legendre polynomial

Z �1

1
f(x)dx ⇡

nX

i=1

wif(xi)

I For instance, K becomes (for mesh element T k
)

Kk =

Z

⌦
r'i ·r'jd⌦

=

Z

Tk

@x'i@x'j + @y'i@y'jd⌦ = Area(T k)(c1,ic1,j + c2,ic2,j)

Problem Formulation 9



Process

So basically, the process is as follows

I generate a mesh

I for every triangular element

– calculate area
– calculate basis functions (linear system)
– calculate resulting mass, sti↵ness, etc. matrices w/ quadrature
– stamp it into a global matrix

I assemble into Au=b

I solve for u, solution is real part of u

Naturally, many loops and systems that can be parallelized. Note the

resulting system is very sparse.

Problem Formulation 10



Outline

Problem Formulation

Parallel Implementation

Performance Benchmarking

Further Improvements

Parallel Implementation 11



Meshing

- Well formed triangular mesh
- Use delaunay refinement for 

meshing, then iteratively 
approve upon it

- See “mesh.mov” in submission

https://docs.google.com/file/d/151N3WWJzjudVne6huEXIR4_k7qjwp8vI/preview


Meshing Parallelization

- Parallelize the parts 
where we are identifying 
the set of poor quality 
triangles

- Rest is hard to negotiate 
since triangulation is 
black-boxed and adding 
multiple circumencenters 
at once risks inconsistent 
element sizes



Element Matrices Construction

- Use numerical quadrature for each
- Main loop index on numpy matrix 

dimensions
- Internally use lambda functions to 

calculate appropriate values and “stamp” 
into global matrix

- Elements need to be sufficiently 
removed from their neighbors to 
avoid having two threads fighting 
over same parts of global matrix



Basis functions and Numerical quadrature calculation

- Cunumeric and other parallel libraries can further parallelize certain 
processes within this

- Prefer to use operations with numpy arrays as opposed to naive loops



Overarching Linear System

- Very sparse linear system to be 
solved

- Symmetric, as it is a nxn matrix 
with n elements on each side

- Hard to exactly transform to 
strictly diagonal matrix due to 
unstructured mesh making 
elements spatially nearby each 
other far apart index-wise



Parallelization Comments

- Cunumeric does not parallelize most linalg operations
- Solving the actual linear system incurs a heavy penalty due to this

- System is very sparse, but since numpy does not natively 
implement sparse matrices, converted to scipy for final linear 
system solve

- Sparse matrices implemented from SciPy



Parallelization Comments

- Cunumeric does not parallelize most linalg operations
- Solving the actual linear system incurs a heavy penalty due to this

- System is very sparse, but since numpy does not natively 
implement sparse matrices, need to solve a dense matrix

- Sparse matrices implemented from SciPy



Numerical Results

- We see resonance phenomena 
for different wavenumbers, here 
for 6 - 6.5 range

- Ran for a mesh element quality of 
0.2 and an uniform refinement 2x 
over



Results

- Ran on g4dn.xlarge on AWS (1 NVidia T4 CPU) with cunumeric, python, and 
julia implementations

- Roughly 3x speedup on critical section of matrix stamping on 
Python/cuNumeric with 1 GPU

- Not great admittedly, cost incurred from dense matrix solve
- Should have converted at end into sparse matrix



Results

- Also parallelized with Numba to test performance (helmholtz-numba.py
- Fast with vectorization and compilation to c code optimizations

- 5s elapsed baseline



Results

- Also implemented and ran on Julia language (CPU parallelization)
- 1 GPU accelerant roughly correspond to 3x CPU accelerant



Outline

Problem Formulation

Parallel Implementation

Performance Benchmarking

Further Improvements

Further Improvements 14



Local Discontinuous Galerkin Method

I The main obstacle for enabling more parallelism is the basis

functions 'i(xj) = �ij needing to be continuous, hence the

necessary synchronization when assembling global matrix and solving

for coe�cients on every element

I Discontinuous-Galerkin methods allow these to be piecewise

constant functions, making the mass matrix block-diagonal since

there are no inter-element basis function dependencies

uh =
nX

k=1

pX

i=0

uk
i '

k
i (x)

Further Improvements 15



Local Discontinuous Galerkin Method

I Cannot be directly done on anything higher than first-order spatial

derivative

I Rewrite into a system of first-order equations and choose fluxes

appropriately, hence the Local DG method

�r� = k2u ru = �

I This becomes embarrassingly parallel because I can parallelize

across elements in constructing elemental submatrices matrices

without race conditions on stamping into the same place on the

global matrix

Further Improvements 16



Parallel Unstructured Mesh Generation

I Most naive way to pre-section mesh into a few blocks so at least one

process can take each block

I Falls apart for more complicated unstructured meshes unfortunately

Further Improvements 17


	Problem Formulation
	Parallel Implementation
	Performance Benchmarking
	Further Improvements

