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Problem Statement

I Consider the time-independent component rendered from the wave
equation under separation of variables

– Sommerfeld radiation condition for unique radiating solution

I Models wave propagation within waveguides

�r2u� k2u = f on ⌦

n ·ru = 0 on �wall

n ·ru+ iku = 0 on �out

n ·ru+ iku = 2ik on �in
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Galerkin Finite Element Method

I Looking for approximate solution in space of linear continuous

functions Vh on some mesh Th (Bubnov-Galerkin)

Vh = {v 2 C0(⌦) : v|k 2 P1(K)8K 2 Th}

I We seek some approximate solution uh with the aid of a test

function vh, both within Vh

– Impose the weighted average with vh over each element and solve
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Galerkin Finite Element Method

I Integrate on domain, pop out boundary conditions, apply divergence

theorem to get a weak formulation of the PDE

Z

⌦
�r2uhvd⌦ =

Z

⌦
k2uhvd⌦

Z

⌦
ruh·rvd⌦ =

Z

⌦
k2uhvd⌦+

I

�out

(�ikuh)vds+

I

�in

(2ik�ikuh)vds

I Hence the problem, find uh 2 Vh which satisfies this
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Galerkin Finite Element Method

I Replace the approximate solution with a weighted average of basis

functions, and the test function with a basis function, '(x)

uh =
NX

j=1

uj'j v = 'i

I Gives the discretization of form

Z

⌦
[
NX

j=1

ujr'j ] ·r'i(x)d⌦ =

Z

⌦
k2[

NX

j=1

uj'j ]'id⌦�

I

�out

ik[
NX

j=1

uj'j ]'ids+

I

�in

(2ik � ik[
NX

j=1

uj'j ])'ids
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Galerkin Finite Element Method

Factoring out admits a discretization of form Au = b where

A = K � k2M + ik(Bout +Bin) b = 2ikbin

NX

j=1

uj

✓Z

⌦
r'i ·r'jd⌦� k2

Z

⌦
'i'jd⌦+ ik

✓I

�out

'i'jds+

I

�in

'i'jds

◆◆

= 2ik

I

�in

'ids

K =

Z

⌦
r'i ·r'jd⌦ M =

Z

⌦
'i'jd⌦ Bout =

I

�out

'i'jds

Bin =

I

�in

'i'jds bin =

I

�in

'ids
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Basis functions

I For some triangle element on the mesh T k
bounded by xk

1 , x
k
2 , x

k
3

I Corresponding basis functions satisfy 'k
i (x

k
j ) = �ij

I Say we have linear basis functions of the form 'k
i = c0 + c1x+ c2y,

we need to solve the following system for each triangular element on

the mesh

0

@
1 xk

1 yk1
.
.

1

A

0

@
c0 . .
c1
c2

1

A =

0

@
1 0 0
0 1 0
0 0 1

1

A
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Numerical Quadrature

I Use Gaussian quadrature to evaluate integrals which cannot be

solved analytically with xi the roots of the nth Legendre polynomial

Z �1

1
f(x)dx ⇡

nX

i=1

wif(xi)

I For instance, K becomes (for mesh element T k
)

Kk =

Z

⌦
r'i ·r'jd⌦

=

Z

Tk

@x'i@x'j + @y'i@y'jd⌦ = Area(T k)(c1,ic1,j + c2,ic2,j)
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Process

So basically, the process is as follows

I generate a mesh

I for every triangular element

– calculate area
– calculate basis functions (linear system)
– calculate resulting mass, sti↵ness, etc. matrices w/ quadrature
– stamp it into a global matrix

I assemble into Au=b

I solve for u, solution is real part of u

Naturally, many loops and systems that can be parallelized. Note the

resulting system is very sparse.
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Meshing

- Well formed triangular mesh
- Use delaunay refinement for 

meshing, then iteratively 
approve upon it

- See “mesh.mov” in submission

https://docs.google.com/file/d/151N3WWJzjudVne6huEXIR4_k7qjwp8vI/preview


Meshing Parallelization

- Parallelize the parts 
where we are identifying 
the set of poor quality 
triangles

- Rest is hard to negotiate 
since triangulation is 
black-boxed and adding 
multiple circumencenters 
at once risks inconsistent 
element sizes



Element Matrices Construction

- Use numerical quadrature for each
- Main loop index on numpy matrix 

dimensions
- Internally use lambda functions to 

calculate appropriate values and “stamp” 
into global matrix

- Elements need to be sufficiently 
removed from their neighbors to 
avoid having two threads fighting 
over same parts of global matrix



Basis functions and Numerical quadrature calculation

- Cunumeric and other parallel libraries can further parallelize certain 
processes within this

- Prefer to use operations with numpy arrays as opposed to naive loops



Overarching Linear System

- Very sparse linear system to be 
solved

- Symmetric, as it is a nxn matrix 
with n elements on each side

- Hard to exactly transform to 
strictly diagonal matrix due to 
unstructured mesh making 
elements spatially nearby each 
other far apart index-wise



Parallelization Comments

- Cunumeric does not parallelize most linalg operations
- Solving the actual linear system incurs a heavy penalty due to this

- System is very sparse, but since numpy does not natively 
implement sparse matrices, converted to scipy for final linear 
system solve

- Sparse matrices implemented from SciPy



Parallelization Comments

- Cunumeric does not parallelize most linalg operations
- Solving the actual linear system incurs a heavy penalty due to this

- System is very sparse, but since numpy does not natively 
implement sparse matrices, need to solve a dense matrix

- Sparse matrices implemented from SciPy



Numerical Results

- We see resonance phenomena 
for different wavenumbers, here 
for 6 - 6.5 range

- Ran for a mesh element quality of 
0.2 and an uniform refinement 2x 
over



Results

- Ran on g4dn.xlarge on AWS (1 NVidia T4 CPU) with cunumeric, python, and 
julia implementations

- Roughly 3x speedup on critical section of matrix stamping on 
Python/cuNumeric with 1 GPU

- Not great admittedly, cost incurred from dense matrix solve
- Should have converted at end into sparse matrix



Results

- Also parallelized with Numba to test performance (helmholtz-numba.py
- Fast with vectorization and compilation to c code optimizations

- 5s elapsed baseline



Results

- Also implemented and ran on Julia language (CPU parallelization)
- 1 GPU accelerant roughly correspond to 3x CPU accelerant
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Local Discontinuous Galerkin Method

I The main obstacle for enabling more parallelism is the basis

functions 'i(xj) = �ij needing to be continuous, hence the

necessary synchronization when assembling global matrix and solving

for coe�cients on every element

I Discontinuous-Galerkin methods allow these to be piecewise

constant functions, making the mass matrix block-diagonal since

there are no inter-element basis function dependencies

uh =
nX

k=1

pX

i=0

uk
i '

k
i (x)
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Local Discontinuous Galerkin Method

I Cannot be directly done on anything higher than first-order spatial

derivative

I Rewrite into a system of first-order equations and choose fluxes

appropriately, hence the Local DG method

�r� = k2u ru = �

I This becomes embarrassingly parallel because I can parallelize

across elements in constructing elemental submatrices matrices

without race conditions on stamping into the same place on the

global matrix
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Parallel Unstructured Mesh Generation

I Most naive way to pre-section mesh into a few blocks so at least one

process can take each block

I Falls apart for more complicated unstructured meshes unfortunately
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