Parallel Helmholtz Equation Wave Propagation through Waveguides

Edmund Chen

CS 315B

December 14, 2022

Outline

Problem Formulation

Parallel Implementation

Performance Benchmarking

Further Improvements

Problem Statement

- Consider the time-independent component rendered from the wave equation under separation of variables
- Sommerfeld radiation condition for unique radiating solution
- Models wave propagation within waveguides

$$
\begin{aligned}
-\nabla^{2} u-k^{2} u & =f & & \text { on } \Omega \\
\mathbf{n} \cdot \nabla u & =0 & & \text { on } \Gamma_{\text {wall }} \\
\mathbf{n} \cdot \nabla u+i k u & =0 & & \text { on } \Gamma_{\text {out }} \\
\mathbf{n} \cdot \nabla u+i k u & =2 i k & & \text { on } \Gamma_{\mathrm{in}}
\end{aligned}
$$

Galerkin Finite Element Method

- Looking for approximate solution in space of linear continuous functions V_{h} on some mesh T_{h} (Bubnov-Galerkin)

$$
V_{h}=\left\{v \in C^{0}(\Omega):\left.v\right|_{k} \in \mathbb{P}_{1}(K) \forall K \in T_{h}\right\}
$$

- We seek some approximate solution u_{h} with the aid of a test function v_{h}, both within V_{h}
- Impose the weighted average with v_{h} over each element and solve

Galerkin Finite Element Method

- Integrate on domain, pop out boundary conditions, apply divergence theorem to get a weak formulation of the PDE

$$
\begin{gathered}
\int_{\Omega}-\nabla^{2} u_{h} v d \Omega=\int_{\Omega} k^{2} u_{h} v d \Omega \\
\int_{\Omega} \nabla u_{h} \cdot \nabla v d \Omega=\int_{\Omega} k^{2} u_{h} v d \Omega+\oint_{\Gamma_{\text {out }}}\left(-i k u_{h}\right) v d s+\oint_{\Gamma_{\text {in }}}\left(2 i k-i k u_{h}\right) v d s
\end{gathered}
$$

- Hence the problem, find $u_{h} \in V_{h}$ which satisfies this

Galerkin Finite Element Method

- Replace the approximate solution with a weighted average of basis functions, and the test function with a basis function, $\varphi(\mathbf{x})$

$$
u_{h}=\sum_{j=1}^{N} u_{j} \varphi_{j} \quad v=\varphi_{i}
$$

- Gives the discretization of form

$$
\begin{aligned}
\int_{\Omega}\left[\sum_{j=1}^{N} u_{j} \nabla \varphi_{j}\right] \cdot & \nabla \varphi_{i}(x) d \Omega=\int_{\Omega} k^{2}\left[\sum_{j=1}^{N} u_{j} \varphi_{j}\right] \varphi_{i} d \Omega- \\
& \oint_{\Gamma_{\text {out }}} i k\left[\sum_{j=1}^{N} u_{j} \varphi_{j}\right] \varphi_{i} d s+\oint_{\Gamma_{\text {in }}}\left(2 i k-i k\left[\sum_{j=1}^{N} u_{j} \varphi_{j}\right]\right) \varphi_{i} d s
\end{aligned}
$$

Galerkin Finite Element Method

Factoring out admits a discretization of form $\mathbf{A u}=\mathbf{b}$ where

$$
\begin{gathered}
\mathbf{A}=K-k^{2} M+i k\left(B_{\text {out }}+B_{\text {in }}\right) \quad \mathbf{b}=2 i k \mathbf{b}_{\text {in }} \\
\sum_{j=1}^{N} u_{j}\left(\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d \Omega-k^{2} \int_{\Omega} \varphi_{i} \varphi_{j} d \Omega+i k\left(\oint_{\Gamma_{\text {out }}} \varphi_{i} \varphi_{j} d s+\oint_{\Gamma_{\text {in }}} \varphi_{i} \varphi_{j} d s\right)\right) \\
=2 i k \oint_{\Gamma_{\text {in }}} \varphi_{i} d s \\
K=\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d \Omega \quad M=\int_{\Omega} \varphi_{i} \varphi_{j} d \Omega \quad B_{\text {out }}=\oint_{\Gamma_{\text {out }}} \varphi_{i} \varphi_{j} d s \\
B_{i n}=\oint_{\Gamma_{i n}} \varphi_{i} \varphi_{j} d s \quad \mathbf{b}_{\text {in }}=\oint_{\Gamma_{\text {in }}} \varphi_{i} d s
\end{gathered}
$$

Basis functions

- For some triangle element on the mesh T^{k} bounded by $x_{1}^{k}, x_{2}^{k}, x_{3}^{k}$
- Corresponding basis functions satisfy $\varphi_{i}^{k}\left(x_{j}^{k}\right)=\delta_{i j}$

- Say we have linear basis functions of the form $\varphi_{i}^{k}=c_{0}+c_{1} x+c_{2} y$, we need to solve the following system for each triangular element on the mesh

$$
\left(\begin{array}{ccc}
1 & x_{1}^{k} & y_{1}^{k} \\
\cdot & &
\end{array}\right)\left(\begin{array}{lll}
c_{0} & \cdot & \cdot \\
c_{1} & & \\
c_{2} & &
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Numerical Quadrature

- Use Gaussian quadrature to evaluate integrals which cannot be solved analytically with x_{i} the roots of the nth Legendre polynomial

$$
\int_{1}^{-1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

- For instance, K becomes (for mesh element T^{k})

$$
\begin{aligned}
& K^{k}=\int_{\Omega} \nabla \varphi_{i} \cdot \nabla \varphi_{j} d \Omega \\
& =\int_{T_{k}} \partial_{x} \varphi_{i} \partial_{x} \varphi_{j}+\partial_{y} \varphi_{i} \partial_{y} \varphi_{j} d \Omega=\operatorname{Area}\left(T^{k}\right)\left(c_{1, i} c_{1, j}+c_{2, i} c_{2, j}\right)
\end{aligned}
$$

Process

So basically, the process is as follows

- generate a mesh
- for every triangular element
- calculate area
- calculate basis functions (linear system)
- calculate resulting mass, stiffness, etc. matrices w/ quadrature
- stamp it into a global matrix
- assemble into $\mathbf{A u}=\mathbf{b}$
- solve for u, solution is real part of u

Naturally, many loops and systems that can be parallelized. Note the resulting system is very sparse.

Outline

Problem Formulation

Parallel Implementation

Performance Benchmarking

Further Improvements

Meshing

- Well formed triangular mesh
- Use delaunay refinement for meshing, then iteratively approve upon it
- See "mesh.mov" in submission

Meshing Parallelization

- Parallelize the parts where we are identifying the set of poor quality triangles
- Rest is hard to negotiate since triangulation is black-boxed and adding multiple circumencenters at once risks inconsistent element sizes

```
function Ruppert(points, segments, threshold) is
    T := DelaunayTriangulation(points)
    Q := the set of encroached segments and poor quality triangles
    while Q is not empty: // The main loop
        if Q contains a segment s:
            insert the midpoint of }s\mathrm{ into }
        else Q contains poor quality triangle t:
            if the circumcenter of t encroaches a segment s:
                add s to Q;
            else:
                insert the circumcenter of t into T
                end if
        end if
        update Q
    end while
    return T
end Ruppert.
```


Element Matrices Construction

- Use numerical quadrature for each
- Main loop index on numpy matrix dimensions
- Internally use lambda functions to calculate appropriate values and "stamp" into global matrix
- Elements need to be sufficiently removed from their neighbors to

```
def loadvec(p, t, e):
    k, i, j = find_bnd(e, t)
    cmx = coeffmx(np.identity(3), p, t, k)
    f = lambda x,y:((cmx[0,i] + cmx[1,i]*x)*y + (cmx[2,i]*y**2)/2.0)
    g = lambda x,y:((cmx[0,j] + cmx[1,j]*x)*y + (cmx[2,j]*y**2)/2.0)
    if p[t[k,i],1] > p[t[k,j],1]:
        id = f(p[t[k,i],0],p[t[k,i],1]) - f(p[t[k,i],0],p[t[k,j],1])
        jd = g(p[t[k,i],0],p[t[k,i],1]) - g(p[t[k,i],0],p[t[k,j],1])
    else:
        id = f(p[t[k,i],0],p[t[k,j],1]) - f(p[t[k,i],0],p[t[k,i],1])
        jd = g(p[t[k,i],0],p[t[k,j],1]) - g(p[t[k,i],0],p[t[k,i],1])
    return np.array([id, jd]) #review
``` avoid having two threads fighting over same parts of global matrix

\section*{Basis functions and Numerical quadrature calculation}
- Cunumeric and other parallel libraries can further parallelize certain processes within this
- Prefer to use operations with numpy arrays as opposed to naive loops

\section*{Overarching Linear System}
- Very sparse linear system to be solved
- Symmetric, as it is a nxn matrix with \(n\) elements on each side
- Hard to exactly transform to strictly diagonal matrix due to unstructured mesh making elements spatially nearby each other far apart index-wise

\section*{Parallelization Comments}
- Cunumeric does not parallelize most linalg operations
- Solving the actual linear system incurs a heavy penalty due to this
- System is very sparse, but since numpy does not natively implement sparse matrices, converted to scipy for final linear system solve
- Sparse matrices implemented from SciPy

\section*{Parallelization Comments}
- Cunumeric does not parallelize most linalg operations
- Solving the actual linear system incurs a heavy penalty due to this
- System is very sparse, but since numpy does not natively implement sparse matrices, need to solve a dense matrix
- Sparse matrices implemented from SciPy

\section*{Numerical Results}
- We see resonance phenomena for different wavenumbers, here for 6-6.5 range
- Ran for a mesh element quality of

\section*{Results}
- Ran on g4dn.xlarge on AWS (1 NVidia T4 CPU) with cunumeric, python, and julia implementations
- Roughly 3x speedup on critical section of matrix stamping on Python/cuNumeric with 1 GPU
- Not great admittedly, cost incurred from dense matrix solve
- Should have converted at end into sparse matrix
```

ED> done with mesh import()
ED> done with waveguide_edges()
ED> done with femhelmholtz1()
ED> done with femhelmholtz2()
ED> done with femhelmholtz3()
ED> done with femhelmholtz4()
ED> femhelmholtz execution time: 7.039739370346069 seconds
ED> A\B execution time: 22.86920189857483 seconds
ED> Overall execution time: 32.64009618759155 seconds
[ 1.04402865 -0.49637759 -1.91578359 ... 0.90199697 1.00425585
0.54496894]

```

\section*{Results}
- Also parallelized with Numba to test performance (helmholtz-numba.py
- Fast with vectorization and compilation to c code optimizations
- 5 s elapsed baseline

\section*{Results}
- Also implemented and ran on Julia language (CPU parallelization) - 1 GPU accelerant roughly correspond to \(3 x\) CPU accelerant
```

generating mesh:
4.704548 seconds (15.24 M allocations: 977.409 MiB, 4.65% gc time, 2.62% compilation time)
finding mesh boundaries:
0.340401 seconds (931.75 k allocations: 119.770 MiB, 3.48% gc time, 61.24% compilation time)
generating constituent matrices:
28.525171 seconds (18.06 M allocations: 144.674 GiB, 5.27% gc time, 4.72% compilation time)
solving linear system:
1.181536 seconds (4.29 M allocations: 299.368 MiB, 14.62% gc time, 88.33% compilation time)

```

\section*{Outline}

Problem Formulation

\section*{Parallel Implementation}

\section*{Performance Benchmarking}

Further Improvements

\section*{Local Discontinuous Galerkin Method}
- The main obstacle for enabling more parallelism is the basis functions \(\varphi_{i}\left(x_{j}\right)=\delta_{i j}\) needing to be continuous, hence the necessary synchronization when assembling global matrix and solving for coefficients on every element
- Discontinuous-Galerkin methods allow these to be piecewise constant functions, making the mass matrix block-diagonal since there are no inter-element basis function dependencies
\[
u_{h}=\sum_{k=1}^{n} \sum_{i=0}^{p} u_{i}^{k} \varphi_{i}^{k}(x)
\]

\section*{Local Discontinuous Galerkin Method}
- Cannot be directly done on anything higher than first-order spatial derivative
- Rewrite into a system of first-order equations and choose fluxes appropriately, hence the Local DG method
\[
-\nabla \sigma=k^{2} u \quad \nabla u=\sigma
\]
- This becomes embarrassingly parallel because I can parallelize across elements in constructing elemental submatrices matrices without race conditions on stamping into the same place on the global matrix

\section*{Parallel Unstructured Mesh Generation}
- Most naive way to pre-section mesh into a few blocks so at least one process can take each block
- Falls apart for more complicated unstructured meshes unfortunately```

