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Abstract

We preform a regression on individual and intersec-
tional demographic factors, specifically predicted gen-
der and predicted race in addition to generalized job
role and employee rating of various public state uni-
versity system employee salaries. Our findings suggest
that some of these factors have significant predictive
power regarding salary. We discuss ethical considera-
tions in using predicted race and gender, and what its
implications are on our findings. The code is hosted
at the following link: https://github.gatech.edu/6471-
pay/prof-pay

Introduction
University employee salaries vary widely and there are many
potential reasons for these differences. Some factors are le-
gitimate causes for differences in pay, such as research im-
pact, tenure, or location. This project investigates demo-
graphic factors, specifically race and gender, in addition to
intersectional groups across these two factors. Beyond de-
mographic factors we also perform analysis on Georgia Tech
Professor Course/Instructor Opinion Survey data to see if
ratings here have significant predictive ability over salary.

To begin we collected public university system data from
several states from different regions. We collected data from
California, Georgia, Illinois, North Carolina, Tennessee and
Texas. We cleaned these data set, conforming the field
names, individual’s names, position titles so that we could
perform analysis on all of the data together with state as a
factor. Ultimately with the data from all of these sources,
our final list of factors to perform regression with was: State,
Year, Institution, Salary, Predicted Race, Predicted Gender,
and Generalized Role. For the Texas data specifically, we
separated this data set to evaluate our prediction methods as
it did include race and gender data. Because race and gender
data was not available for the remaining public data sets, we
use predictive models based on first and last name to pre-
dict gender and race respectively. In addition to predicting
these values we also had to consolidate the position titles
because each state had their own naming system sometimes
with hundreds of individual titles. We chose to reduce down
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to Faculty, Instructors, Lecturers, and Professors. We per-
form more specific analysis amongst just professors scru-
tinizing to Professors, Assistant Professors, and Associate
Professors.

With this data we perform regression analysis at three dif-
ferent scopes. We perform regression with data from all uni-
versities and generalized roles, data from all universities for
each of our specific roles, and finally data from just Geor-
gia Tech to perform analysis of Course Instructor Opinion
Survey ratings. For each of these scopes we perform regres-
sion to predict salary, using multiple regression models and
parameter tuning techniques. From these models we inter-
pret the results by performing significance tests to evaluate
each factor’s predictive ability. For the variables determined
to be significant we interpret the coefficients themselves to
detect if there are biases against certain demographic groups
or intersectional demographic groups.

Related Works
To gain adequate background knowledge on the prior work
done in this space, we looked for studies that concerned
similar statistical analyses on salaries for university facul-
ties. From a high-level overview, many of the studies we
found addressed specific institutions but did not consider a
broader scope to compare different states or types of institu-
tions. Many studies implied they ran into the issue of gaining
enough standardized data to execute their analyses on all the
factors desired, limiting their scope to venues where they al-
ready had access to a high number of data features. All in
all, much of the prior work presented interesting insights on
data gathering and regression techniques that helped inform
our project. For instance, (Claypool et al. 2017) provided an
insightful methodology in using linear regressions to impli-
cate differences in salary for demographic-related factors.

(Konsor 2010) and (Claypool et al. 2017) used regression
analysis to analyze salary based on different traits. The for-
mer specially used regional income, enrollment, tuition, and
discipline concentration to explain average salary determi-
nation. With the studies that showed more granularity such
as (Schrouder et al. 2019) however, they were not able to get
as many standardized quantities and restricted their analyses
to only one department of one university. In a similar vein,
(Webster 1995) and (Cheng et al. 2019) considered a larger
pool of data point but did not have many factors for each,



specifically (Cheng et al. 2019) took a survey of the Ameri-
can Medical Informatics Association (AMIA).

For factors past the demographical, we found studies that
touched on teaching effectiveness in a limited scope. For in-
stance, (Hoyt and Reed 1977) used an approach that con-
sidered three quantitative metrics of teaching effectiveness
for 266 faculty at Kansas State University. They then used
this to determine whether it affected salary percent and dol-
lar increases, taking into account discipline partitions. They
concluded that there was a modest but significant correlation
between better teaching and better salaries and that such an
effect was more apparent in the humanities than sciences.
In another vein, (Tsikliras, Robinson, and Stergiou 2014)
sought to determine whether rankings led to higher salaries.
Their correlative analysis implicated an asymptotic trend
for American universities but none for Canadian universi-
ties when considered in their local contexts. However, in the
global contexts both showed a strong correlation, supporting
their hypothesis that funding leads to higher rankings.

All in all, these studies helped us gain an idea of what
approaches past work in the field had taken on. We sought
to strike a careful balance between having more data so we
could study and analyse a wider scope of states and institu-
tions while also having enough standardized data where we
could provide meaningful analyses. Critically, we consid-
ered the intersectional factors that none of the related studies
have. For instance, we considered the different combinations
of demographic factors as opposed to considering them each
independently.

Ethical Considerations
One major assumption the conclusions of our paper rely
upon is the accuracy of our race and gender predictions.
When collecting our data, gender and race data was gener-
ally not available. Once this was apparent our options were
either to not include race and gender data which would make
our main goal impossible, or to use some method to predict
gender and race from the data we had. We decided that we
wanted to predict the race and gender and we would make
sure to address the implications and ethics of this choice. To
predict race and gender we came up with three options: Use
a statistical approach, perform web scraping to collect em-
ployee photos and perform a computer vision analysis, or to
contact the university systems and request the data.

Each of these options came with their own advantages
and disadvantages. For the computer vision approach the
main hurdles obviously would have been web scraping for
all of these photos across dozens of individual university
web pages and potentially several department pages for each
university. In addition to this major obstacle, staff photos are
not always available for numerous reasons, for example, if
they are not offered, the employee used to work there but
no longer does, the employee is relatively new, just to name
a few. The consequences of this is that it would have drasti-
cally reduced the size of our data, and potentially introduced
some underlying biases associated with having an employee
photo online. (Serengil 2019) addresses some of the ethical
implications of using or even creating Artificial intelligence

demographic prediction technologies. The main surface con-
cerns of technologies like this would of course be those of
malicious use in the hands of some racist or sexist party, in
addition to privacy concerns. They conclude, perhaps with
some bias as a developer of these technologies, that there is
nothing wrong with them being available as there are ben-
eficial use cases, and that it should be governing bodies in
charge of regulations to prevent malicious use.

The next alternative was to request data from the public
university systems directly. The drawbacks of this approach
are more logistical in nature, mainly being that the university
systems may not have the data in the first place to give, they
may not be allowed to give us the data, they may not respond
at all. While this would be the most accurate in terms of la-
beling, it is unlikely that we would have gotten the data we
needed in our time-frame. Additionally this method would
have to come with additional security concerns as it is offi-
cial personal data not publicly available.

That left us with our final option, a statistical approach.
The drawbacks of the statistical approach are obviously ac-
curacy and potential bias inherent in the data that is the basis
for the model we use. The benefits of this approach were that
it could be done relatively quickly, it would allow us to use
all of the data we had collected, and would eliminate the
need to clean these factors of the data for the most part.

Figure 1: Race Prediction Confusion Matrix

In order to mitigate the negatives of the statistical method,
we did our best to find models that had minimal apparent bi-
ases. What we found were two Python packages each one
with a model for predicting gender or race. For race we used
the ethnicolr package, specifically the pred census ln func-
tion to predict race from last name. This model is based on
the 2010 census data, and this model has been updated and
maintained within the past year, so we believe this is as un-
biased of a data source as we can hope to get and the model
is well kept, both promising sings. One thing to note is that
the model outputs posterior probabilities for each name be-
ing each of the available races, but we elected to just use the
highest probability race, because we could not come up with
an approach to model intersectional data if our race variable
was not discrete.



Race Predictor Evaluation
To evaluate the effectiveness of this model on professor data
sets, we collected salary data from Texas which did include
race data. To evaluate our model, we ran it on the Texas data
so we had an actual and predicted race columns. We then
created a confusion matrix shown in Figure 1 to visualize
the effectiveness of our model. We first had to consolidate
the Texas race data down into the four category outputs of
our model for convenience, and also left an ’other’ category
for races that our model could not output to help determine
how our model affects minority groups such as American In-
dians and Native Americans. Summing the diagonal of Fig-
ure 1 shows that the model predicts race correctly 79.06%
of the time. The most significant issue is that it seems to
mis-classify Black individuals as White with 7.16% of all
of the data falling in this category, while generally incor-
rectly classifying Black individuals 94.7% of the time. Only
1.75% of the data fell into the ’other’ category and the model
seemed to split that data cross the four categories in a sim-
ilar proportion to the rest of the data. Also worth consider-
ing is that this test set of data is from Texas and likely has
a significantly different proportion across the races than the
other data sets from other states. This model did not perform
as well as we hoped and its biggest flaw of mis-classifying
Black individuals really detracts from any findings with re-
spect to them. This is however the best model we could find
and at least classifies Whites, Hispanics, and Asians/Pacific
Islanders correctly at rates of 94.0%, 71.4%, and 66.9% re-
spectively.

Figure 2: Gender Prediction Confusion Matrix

Gender Predictor Evaluation
We performed a similar evaluation for our gender prediction
methods. For gender prediction we used Python’s gender-
guesser package to predict gender based on first name. We
chose the gender-guesser package due to the care in its data
collection as they had several native speakers of multiple
languages vet the data in helping determine their classifica-
tion, taking into account different cultures. Additionally it’s
output is not on a binary scale, expressing confidence in its
answer with additional categories beyond male and female

being mostly male, mostly female, androgynous if the data
for the model is evenly split between male and female, and
unknown, if there is not enough data to make a guess. in
Figure 2 we show the confusion matrix between the Texas
data and the raw prediction which show pretty impressive
results of 74.6% exactly correct, and 12.1% unknown. For
the mostly male and mostly female categories, if you coerce
these categories into their corresponding category as you can
see in figure 3, the exact match percentage rises to 83.3%
only mis-classifying 2.5% of the data. As might be expected,
individuals labeled as having androgynous names are evenly
split between being male and female, and a similar split is
found in the unknown category, though slightly more female
names are labeled as unknown. We are very happy with the
performance of this gender model and we believe that the
findings regarding any differences specifically with gender
would be realistic.

Figure 3: Consolidated Gender Prediction Confusion Matrix

We believe that our use of predicted demographic data
is ethical because it is done with the intent of identifying
bias, not perpetuating it, and we hope that any findings be
interpreted with the knowledge that they are predicted val-
ues. It is important to note that any of our findings specif-
ically regarding black university employees should be take
with skepticism. Other things to note that could potentially
be improved upon in future work is including more genders
beyond male and female, and more races beyond the four
output by our model, or splitting Asian/Pacific Islanders into
more specific groups. Additionally our modeling does not
take into account people of multiple races. We compromised
these aspects in order to use more data, we hope that future
works can potentially use smaller datasets with true race and
gender values and use this paper to supplement any findings.

Data Sources and Collection
In order to perform our analyses, we needed to start off by
collecting data from a wide range of salary data sources for
a large scope of research universities. We wanted to ensure
there were enough datapoints to produce a meaningful anal-
ysis as the strength of our resulting statistics depends on
the associated sample sizes. As public institutions are bound
by American law to release salary data under the freedom



of information act and public record laws, we targeted our
analyses around large public university systems in the US.
Through such means, we are able to better ensure there will
be similar dimensions in all our data sources. Public univer-
sities are a critical part of American higher-education, es-
pecially at the undergraduate level. According to (Hanson
and Checked 2022), 77.7% of undergraduates and 48.8% of
graduate students attend public institutions in the US. By
considering public institutions, we focused on the preemi-
nent university systems in certain states in question and pro-
duced our analyses based on those datapoints.

Data Gathering
In essence, we first set off to gather data from institutions in
different states and determine what other fine-grained data
points we may be able to obtain about professors such as
department, role, seniority, teaching effectiveness, and re-
search impact. Drawing back to the balance alluded to in the
related work section, we were careful to draw from enough
data sources that we could implicate a meaningful analysis
while still preserving enough standardized categories of data
that we could draw from multiple states and institutions. All
in all, we went through to survey which university systems
reported the most similar data values and ended up gathering
data for the California State University system, University
of North Carolina system, the University of Illinois system,
the University of Tennessee system, the University of Texas
system, and the University System of Georgia.

The University of Texas system had the most granular
records, with provided data values on duration of employ-
ment, department, and other salary breakdowns. The Univer-
sity System of Georgia unfortunately did not provide spe-
cific departments to which each employee was associated
with, but all other university systems had such a column.
Upon initial gathering, we either used data downloads or
scrapers to systematically aggregate the data.

State Years Instances Features
TN 2021 6,057 7
TX 2019-2021 65,206 11
CA 2011-2020 2,945,939 12
NC 2021 46,950 10
IL 2011-2021 195,070 6
GA 2011-2021 1,228,011 6

Table 1: Data Statistics

Across all schools possible, we sought to maintain the
same data categories and dimensions where possible. Any
categories which were not already standardized we took care
of manually in the later data processing section.

For most of the datapoints in question, namely California,
North Carolina, Georgia, Texas, and Illinois, we were able to
obtain salary records through public data portals where the
respective institutions published their salary data on a yearly
basis. For Tennessee, since there was no readily download-
able data source, we used a website scraper to collect the
data from a table that was available online. We were able to
use this extension to convert 121 pages of 50 entries into 14

csv files, merging them and doing appropriate data postpro-
cessing where needed.

Teaching Effectiveness
Another data source that would render helpful in our anal-
ysis were the teaching effectiveness ratings. As we did not
have access to other universities, we were only able to gain
meaningful teaching effectiveness data points for Georgia
Tech. To do so, we used the Course Instructor Opinion Sur-
vey (CIOS), a semesterly survey administered to Georgia
Tech students in evaluating their instructors. In order to
collect CIOS data, we used a combination of a Selenium
headless browser to operationally access the smartevals site,
where the ratings are hosted, and use BeautifulSoup4 to
scrape the rating entries off the frontend interface to the rat-
ing values. All in all, this yielded 67,816 records of distinct
sections taught by professors.

Algorithm 1 CIOS Teaching Evaluation Data Gathering
Require: Python, BS4, Selenium

Use Selenium to initialize headless browser session
Navigate to CIOS login page and input login details
wait until DUO Login 2FA success
Navigate to ratings site, check success

for each ratings category do
scrape and process header column
for each every page provided do

scrape all column
drop columns that do not abide by data format
press next page button with Selenium

end for
end for

As the primary dimensionality of our analysis will be each
professor, we primarily concerned ourselves with the pro-
fessor table of each year in question. These tables have one
record for each unique course a professor has taught, so they
are not strictly one record to one professor mappings. We
were able to turn this into one record to one professor map-
pings by using a weighted average aggreagation, seen later
in the data processing section.

Overall, taking into account all the different data sources
and inputs we ended up with, we had a process akin to Fig-
ure 4. In the end, everything was aggregated into CSVs for
ease of version control and sharing, using SQL would have
proved much more cumbersome on the data sharing and ver-
sion control front.

Data Processing
After we had all data values sufficiently aggregated, our
next steps concerned standardizing them and populating the
columns which needed to be implicated from the provided
datapoints. In having multiple data sources, we also had to
match the same entity from multiple data sources together
in order to build a cohesive dataset from which we could
extrapolate meaningful analyses from.



Figure 4: Data Aggregation Process

Primary Normalization and Generalization

For the primary consolidation and standardization, we
sought to combine them into one cohesive dataset which
could then be used for an unified analysis. In order to ac-
complish this we had to choose which features to select that
could be taken from as many of our data sources as possi-
ble. We ended up selecting the following: First Name, Last
Name, Institution, Department, Title, Salary across all uni-
versity systems where possible. This was processed by re-
naming corresponding columns of the various data sources
to match, checking the merged datasets for duplicate data
and null/zero values and removing them. Other adjustments
were also performed, for example, the Illinois and Califor-
nia data had a “Name” feature, which we had to split into
a “First Name” and “Last Name” column, accounting for
some entries having a middle initial, and people with more
than one last name. We were able to account for most cases
with the one notable exception occurring if someone has no
middle initial and a last name that is only one letter. We per-
formed all of these operations in python and with the Python
pandas package.

Past the initial normalization, we sought to generalize cer-
tain columns so that we could perform analyses based on the
categories certain professors took for each category with-
out overwhelming with too many possibilities, which would
have made our analyses hard to decipher. For instance, for
the role column, we sought to only consider teaching fac-
ulty, split into categories of professor, instructor, and lec-
turer. Furthermore, professor would be split up into assis-
tant, associate, adjunct, and full professors. By clearly de-
lineating these professor and teaching roles we would be
able to section our analyses to consider only similar job lev-
els at a time. This is important since if one university was
perhaps more research-based than teaching-based, then nat-
urally there may be more full professors than, say adjunct
professors or lecturers, and the analyses would be have the
confounding factor of a different distribution of employee
roles. In that scenario, an university who is more focused on
teaching would hypothetically show up as having a worse
salary distribution but perhaps only have that as a conse-
quence of having more lower-paid staff due to their univer-
sity function.

In order to accomplish this, we used a technique known as

fuzzy matching. For fuzzy matching, we sought to identify
keywords and other common abbreviations aided by gener-
ous margins to identify which generalized role each profes-
sor would fall into. As each of the many states we had data
for included many different teaching roles, it was at times
hard to determine specifically which professor category or
employee category a specific record would fall into. As we
mostly were concerned with half-time or above faculty, we
excluded any emeritus and visiting faculty whose salary fell
significantly outside the average of their colleagues’ salary
ranges. This was accomplished in Python.

Demographic Determination
For demographics determination, we used the first and last
names of employees to map to best guess their demographic
backgrounds as all except the Texas dataset did not already
provide this dimension. However, we recognize there are
complications with this, namely any people have names that
may not necessarily correspond to the majority vote from a
purely statistical view. For the process in determining demo-
graphic data and the ethical considerations wherein, we have
outlined that in the ethical considerations section.

Ratings Normalization
As mentioned in our data collection section, the ratings gar-
nered from CIOS were section by unique course each pro-
fessor taught in a given year. To effectively map this to the
salary data we had, we needed to reduce this to only have
one rating per professor. Drawing on our own past recre-
ational work in normalizing ratings, we determined an ag-
gregation function that would account for the variability be-
tween the different rating subcategories and effectively im-
plicate a final rating for each record. This final rating was
furthermore taken on an average over all the professor’s non-
trivial courses, excluding seminars and reading courses. The
final rating was then a one on one mapping from teacher to
rating. The histogram of the constituent components of each
rating can be seen in Figure 5, with the final aggregate rating
denoted by the thick cyan line.

Figure 5: Professor Scoring Breakdown

Research Impact
We attempted to implicate a h-index and citation count for
the professors in our datasets but ultimately could not reli-



ably populate a large enough sample without massively slic-
ing our overall dataset size. Trying both python interfaces
and scraping approaches, we utilized the Google Scholar
and ORCID interfaces to garner such data. Such interfaces
were heavily rate-limited unfortunately, and it took almost
20 hours to populate one of the smaller datasets, Univer-
sity of Illinois, pre-filtered down into University of Illinois
Urbana Champaign. Upon analyzing the resulting metrics,
there were not enough matched records to continue down
this path. Ultimately, we believe the issue is not enough ju-
nior faculty have rendered a Google Scholar page at that
stage in their career. Additionally, it is hard to exactly
match researchers; for more senior professors who may have
switched institutions, simply matching up the institution on
an online source is insufficient as they may have moved to
another institution.

Data Filtering
Lastly, in order to further hone a fair analysis between the
different institutions and states, we performed data filtering
before going into our final analysis. Firstly, we filtered out
any non-generalized employees so that all records would be
succinctly within the bounds of the roles we were concerned
with. Next, we went through and did basic statistic counts of
each split by department, institution, and overall data values
to determine which universities we had sufficient final data
to perform analyses on. In the end, we identified the Califor-
nia State University System, the University of Illinois Sys-
tem, the University of North Carolina System, The Univer-
sity of Tennessee System, the University of Texas System,
and the University System of Georgia (limited to Georgia
Tech) to perform our final analyses on. As noted above, we
only used the Georgia Tech data from the University Sys-
tem of Georgia dataset since we only had the ratings from
Georgia Tech. All in all, this left us with a concise set of
generalized datasets which we could then perform regres-
sion analyses on.

Regression Methods
Once we had consolidated our data our next step was to per-
form regressive analysis on our data. We had 16 different
sets of data that we wanted to perform regression on and
wanted to see what the best model would be. Our intuition
was that linear regression would be best, but it was very dif-
ficult for us to know the shape of the data for certain es-
pecially because a majority of our factors were categorical.
To settle this uncertainty, we performed a fed different re-
gression techniques on each of our 16 data sets, and would
evaluate these models against one another to determine the
best model for each specific data set.

Linear Regression
The first regression technique we performed was simple lin-
ear regression, which we believe would be the best model
based on the dimensions and type of the data. Before we
performed our regression we first transformed each of our
categorical data fields into n different binary fields, where n

is the number of categories for that field. What this accom-
plishes is that it allows the linear regression to include each
category as its own variable in the regression equation (1).
How the simple linear regression works is that it take each
of our field, that is all of our categorical field which have
been converted to binary variables, and find a linear combi-
nation of coefficients for each of these variables that min-
imizes the average distance of the models prediction from
the actual result. One caveat with using categorical variables
in a linear regression like this is that for each categorical
variable, one category is selected to be normalized against.
That is one category is assigned a coefficient of 0, and all of
the other categories for that variable are assigned coefficient
which represent changes in salary relative to the normalized
category. We will come back to this when we analyze the
significance of our variables.

y = β0 + β1x1 + ...+ βnxn (1)

Multivariate Adaptive Regression Splines
The next regression we performed was Multivariate Adap-
tive Regression Splines or MARS. Before we discussed how
we weren’t certain what the shape of our data was, so we
wanted to try a model which would fit nonlinear data better
in case that was the true shape of our data. The same princi-
ple for turning categorical variables into binary variables for
each category applies. The difference between MARS and
Linear regression is that it will parse through the data search-
ing for ”knots” at which to change the linear regression func-
tion. Once it has completed its search for these knots across
all variables, it will go back and ”prune” the knots which do
not significantly contribute towards the predictive ability as
a way to decrease over fitting. MARS is an effective model
for non linear data, and can be used with categorical data and
as such was a perfect candidate to apply to our data to see
if there was a significant improvement over the linear model
to suggest our data was in fact not linear.

Support Vector Regression
The third regression method was Support Vector Regres-
sion (SVR). SVR works very similar to linear regression,
the main difference being the way that they are optimized.
Where Linear regression minimized the squared error, effec-
tively the average distance of the prediction from the actual
values, SVR minimizes the l2-norm of the coefficients. The
effect of this is that it puts less weight on the coefficients,
which allows less bias to be caused by the training data set.
In addition to less bias, in determining the best SVR equa-
tion to use, there is an additional parameter to be optimized
which lets you choose tolerance for error, which allows this
regression to balance good fit with reduced bias. We elected
to attempt using this regression method to see if our other
models were over-fit to the training data, because if they
were, the performance of a SVR would notably outperform
them. Unfortunately one drawback of SVR was that it is not
very time efficient optimizing the additional parameter. For
this reason we were unable to perform SVR on our large
data sets, specifically the comprehensive data set with data



from all states, and our lecturer data set, and their respective
intersectional data sets.

Logistic Regression
Our final regression was Logistic Regression. Due to the
fact that were were uncertain oft he shape of our data, we
wanted to include one more additional method to test for an-
other non-linear shape to see if it fits better. With Logistic
regression, we would expect a good fit if there was more
for an S-shaped curve (or sigmoid function) rather than a
line. What this can be interpreted is if there is some specific
set of values that change, after which salary significantly in-
creases. It accomplished having this shaped fit by instead
of starting with a simple linear equation and optimizing it,
it optimizes (2). And important aspect of this function to
note is that when performing regression with it rather than
classification, you must regularize your dependent variable
between 0 and 1. We did this only for this function as it
was necessary and doing it for the other functions would not
change performance as everything is still scaled the same,
but it would add an additional step in the end when we want
to derive meaning from the coefficients.

y =
1

1− e−(β0+β1x1+...+βnxn)
(2)

To evaluate our model before we trained all of our mod-
els, we split the data into a training and a test data set. We
divided the length of each of our sets of data such that 90%
would be training data and 10% would be test data. We de-
cided on a 90/10 split because some of our data sets were
relatively small due to how many partitions we made into
the data. Our Georgia Tech data for example had under 3000
data points, so we wanted to maximize the amount of data
used to train our models for our smaller data sets, while
still leaving enough data to effectively test and compare our
models, and with these goals in mind we selected the 90/10
split. Once we had split the data, we trained 3-4 models on
each of our data sets, and we collected some measures on the
models effectiveness using the reserved test data. The met-
rics we used to evaluate our models were R-Squared, Root
Mean Square Error, and Mean Absolute Error.For each of
our data sets we compiled these metrics for each model into
a data frame and manually evaluated these metrics against
one another to determine the best model for each data set.

Analysis
Once we have created all of our models, the next step was
to evaluate them against one another to determine the best
models for each of our data sets. For each of our 16 data
sets we created a table like the one shown in Table 2 which
is for our Assistant Professor non-intersectionalized data, of
course with the exception of our larger data sets not includ-
ing SVR.

Now with theses tables we identify the ”best” model for
each by selecting the model which led in at least 2 of our
metrics. There were no instances where 3 different models
led in each metric so we did not have to come up with a
contingency plan for this. For all of our models we found

Table 2: Model Comparison for Non-Intersectional Ast.
Prof.

R-Squared RMSE MAE
Linear Regression 0.3471 40279 28177

MARS 0.3442 40368 28347
SVR 0.3250 41186 27348

Logistic 0.3330 2.4540 2.4290

Table 3: R-Squared for Best Model for Each Data set
R-Squared Intersectional R-Squared

All Data 0.3931 0.3964
Professor 0.2125 0.1988

Asc. Professor 0.2771 0.2930
Ast. Professor 0.3471 0.3451

Faculty 0.5184 0.5773
Instructors 0.5440 0.5150
Lecturers 0.0416 0.0345

that the linear model was the best fit, with the exception of
our Instructor data. In this case the edge SVR had over Lin-
ear regression was very small, and for this reason combined
with the fact that every other data set’s best model was lin-
ear, suggesting that the general shape of our data truly was
linear. This means that it is possible that some random vari-
ance caused SVR to perform better. These two data sets were
most susceptible to this as they were some of our smallest.
Switching from our data set with gender and race separated
to our intersectional data sets made no differences in which
model was the best, and as shown in Table 3 had no consis-
tent effect on the R-Squared performance of the linear model
for each data set. All of our data had moderate success in ex-
plaining the variance of salary with the exception of our lec-
turer data with R-Squared values of 0.04 and 0.03. For this
reason we did not perform further analysis of the Lecturer
data set, as it is clear our data is not explanatory towards
salary. As for the rest of the data now that we know our data
is at least somewhat explanatory of salary, we can look at
our coefficients of interest.

Significance Analysis
First lets evaluate the results for our data sets which had race
and gender separate. In Tables 4, 5, and 6 we have our data
sets on the left and the columns marked with ’*’ indicate
which categories were identified as significant at a 95% con-
fidence interval, or a p-value of less than 0.05.

Table 4: Significance for Race Variables
Hispanic API Black

All Data * * *
Professor * *

Asc. Professor *
Ast. Professor

Faculty
Instructors



Table 5: Significance for Gender Variables
Female Mostly Female

All Data * *
Professor * *

Asc. Professor * *
Ast. Professor * *

Faculty
Instructors

Table 6: Significance for Gender Variables cont.
Male Mostly Male Androgynous

All Data * * *
Professor *

Asc. Professor * *
Ast. Professor

Faculty
Instructors *

If it is marked as being significant at a 95% confidence
interval it indicates that there is a greater than 95% likeli-
hood that the variance explained by that category is not due
to random chance. This in turns means we can say with rel-
ative confidence that that category has significant predictive
ability towards salary, and in the case of these demographic
variables that there may be bias towards these groups. An
important note before looking at these tables is that for each
categorical variable one category must be selected to be
normalized against. This means the coefficient of one cat-
egory must be set to 0. A consequence of this is that with
a coefficient of 0 it cannot explain any variance and cannot
be identified as significant. This also means that the vari-
ables marked with ”*” indicate significance relative tot his
normalized category. More explicitly, the categories labeled
with a ”*” mean that there is a greater than 95% likelihood
that the variance explained by that category relative to the
normalized category, is not due to randomness. With the in-
tent of our paper being identifying biases towards minority
groups, we selected ’white’ as our normalizing category for
race, and for gender we wanted to select one of androgynous
or unknown as both had an even split on men and women,
so we selected those identified as unknown. It is because of
this that the White and Unknown categories are excluded
from Tables 4, 5, and 6.

Next we will perform the same analysis on our intersec-
tional data. The results of our analysis are shown in Table
7. For our intersectional significance testing we removed the
unknown categorizations of gender (which also include the
androgynous labels) as they were a minority of the cases
and we did not feel conclusions drawn from their signifi-
cance would have useful interpretation. We selected male-
unknown as the normalization category for our intersec-
tional data under similar reasoning to our selection or nor-
malization categories in the segmented race and gender data.
This being said, Tables 7 and 8 shows the intersectional
groups and those marked with an ”*” indicate a 95% like-
lihood that the variance explained by that category relative

Table 7: Significance for Intersectional Variables
Male

White Hispanic API Black
All Data * * *
Professor *

Asc. Professor *
Ast. Professor * * *

Faculty
Instructors

Female
White Hispanic API Black

All Data * * * *
Professor * *

Asc. Professor *
Ast. Professor * * *

Faculty
Instructors *

Table 8: Significance for Intersectional Variables cont.

to the male unknown category is not due to randomness

Coefficient Analysis of Significant Variables
Taking a look at which variables were determined to be sig-
nificant,it is pretty evident that there is not much significance
between gender and racial factors with respect to faculty and
instructor roles. If we take a look at the professor, associate
professor and assistant professor roles however, we not only
see significance on some of these factors, but we see signifi-
cance on the same categories in each, notably all three found
significant explanatory value in the female and mostly fe-
male categories in the data with race and gender separated,
and all three also found significance in the white-female cat-
egory and two of the three in Hispanic-female category. To
get a better grasp of the significance of these variables, we
took the coefficients of the significant race and gender vari-
ables for both of our data sets and plotted them for each of
the professor roles.

Figure 6: Professor Gender Regression Coefficients

Beginning with the gender data from each of the pro-
fessor roles, in Figures 6, 7, and 8 we see that female and
mostly female categories are consistently to the left, signifi-
cantly below the regularization category, and in Figure 6 and
8 they are also below male and or androgynous categories.
Also worth noting is that the Unknown gender category is



Figure 7: Asc. Professor Gender Regression Coefficients

Figure 8: Ast. Professor Gender Regression Coefficients

predicted to be paid more than any other significant cate-
gory with the exception of androgynous in Figure 7. From
this we can conclude than People with predicted female or
mostly female names earn significantly less than those with
unknown predicted gender across all generalized professor
roles.

Looking at the gender roles for each professor role (ex-
cept Assistant Professors which had no significant race cate-
gories) in Figures 9 and 10, the most clear conclusion is that
professors who are Asian/Pacific Islanders earn more than
White professors, predicted to earn close to $5000 more,
holding all else constant. Further, in the case of Hispanic
professors, they earn more than both white and Asian/Pacific
Islanders.

Figure 9: Professor Race Regression Coefficients

Finally we can look at our intersectional models for each
professor role in Figures 11, 12, and 13. With these we see
that white females are consistently to the left of the chart
in all three with the exception of regular professors, where
they are very close with Hispanic Females. This signifies
that relative to the other present intersectional groups on
their respective charts, they are consistently predicted to earn
the least. Looking closer at Figure 13, which nearly all in-
tersectional groups were significant we see another inter-
esting pattern. From left to right the points in Figure 13
are White female, Hispanic Female, API Female, Hispanic
Male, White Male, API Male, and finally the normalization
category, White Unknown. This would seem to suggest that

Figure 10: Asc. Professor Race Regression Coefficients

Figure 11: Professor Intersectional Coefficients

the highest paid woman race is predicted to be paid less than
the lowest paid male race. Additionally amongst each gen-
der, Asian/Pacific Islanders, are paid the most.

Georgia Tech Ratings Analysis
Now that we have gone over our demographic analysis, we
can look into our analysis of the Georgia Tech Data, looking
at how Course/Instructor Opinion Survey ratings perform in
predicting salary. For the Georgia Tech data we included the
intersectional demographic data. Following a similar analy-
sis process as we did with our demographic data we begin
my looking at the performance of our four regression mod-
els on the Georgia Tech data. Like with the Instructor data,
the SVM was the best model, by a very slight margin over
Linear regression. Again we decided to select the Linear re-
gression model due to the fact a significant majority of the
other data sets were linear, giving us confidence this data
would be too. The statistics of our linear models with the
Georgia Tech that are shown in Table 9

Right in the same area of success as our other data mod-
els, based on the R-Squared value our model is moderately
successful in explaining the variance of the data. So we feel
comfortable progressing to analyze the significance of the
variables. Our single variable of interest in this case is rat-
ing, and with a p-value of .0055, we can say that at a 99%
confidence level gender is significant. More explicitly there
is at least a 99% likelihood that the predictive ability rating’s
coefficient has on salary is not due to random chance. Now
that we are confident that rating is significant we can look
at the value itself. The coefficient for rating in this model
is 6821.08. Once interpreted this suggest that for each unit
rating increases, each additional point a professor gets on

Table 9: Significance for Intersectional Variables cont.
R-Squared RMSE MAE

GT 0.291335 52133 37818



Figure 12: Asc. Professor Intersectional Coefficients

Figure 13: Ast. Professor Intersectional Coefficients

their Course/Instructor Opinion Survey rating, their salary is
predicted to increase by nearly $7,000.

Work Division
Tyler was responsible for the gender and race prediction
and evaluation, modeling, model selection, coefficient visu-
alization. Edmund was responsible for data aggregation and
processing, rating normalization, data partitioning, and data
pipelining. We both worked on all written deliverables for
the project.

Conclusion
Overall, looking at our analysis, our goals going in were to
identify differences in salary due to gender, race, or inter-
sectional factors. Based on our findings it seems that we can
confirm the findings of other studies that female professors
get paid less, and we can add the fact that this is consistent
across various subdivisions of the professor title. Further
discussing the intersectional data, our most apparent finding
was that white females specifically get paid less across all
three professor roles. We also found with our Georgia Tech
data that Course/Instructor Opinion Survey rating did have a
significant, positive predictive effect on salary.

Again it is important to take the findings of this study with
some skepticism as the models were trained on data with
race and gender data only being about 80% accurate. Other
potential sources for bias in our data include biases in the
consolidation process of reducing the varied role titles to our
restrictive categories. Additionally with only 5 factors, the
model may have been too rank-deficient to create effective
models, and some of the variance we found to be explained
by race or gender could in actuality be explained by one or
many factors that we were unable to include in our model.

Come directions future research may be able to follow
would be to use real race and gender data to eliminate the
need to put qualifiers on our results. Additionally they could
collect additional data to help reduce the issue of rank de-

ficiency. Further other methods could be used to evaluate
significance, or a better more meaningful normalizing term
could be used in the regression. We hope this paper can lay a
groundwork for investigating intersectional groups with re-
spect to salary.
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